tonyassi's picture
Update app.py
11e01c6 verified
raw
history blame
6.49 kB
import spaces
import gradio as gr
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting, AutoencoderKL
from diffusers.utils import load_image
import torch
from PIL import Image, ImageOps
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
text_pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda")
text_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
text_pipeline.set_ip_adapter_scale(0.6)
image_pipeline = AutoPipelineForImage2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda")
image_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
image_pipeline.set_ip_adapter_scale(0.6)
inpaint_pipeline = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda")
inpaint_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
inpaint_pipeline.set_ip_adapter_scale(0.6)
@spaces.GPU(enable_queue=True)
def text_to_image(ip, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps):
text_pipeline.to("cuda")
ip.thumbnail((1024, 1024))
text_pipeline.set_ip_adapter_scale(ip_scale)
images = text_pipeline(
prompt=prompt,
ip_adapter_image=ip,
negative_prompt=neg_prompt,
width=width,
height=height,
strength=strength,
guidance_scale=guidance,
num_inference_steps=steps,
).images
return images[0]
@spaces.GPU(enable_queue=True)
def image_to_image(ip, image, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps):
image_pipeline.to("cuda")
ip.thumbnail((1024, 1024))
image.thumbnail((1024, 1024))
image_pipeline.set_ip_adapter_scale(ip_scale)
images = image_pipeline(
prompt=prompt,
image=image,
ip_adapter_image=ip,
negative_prompt=neg_prompt,
width=width,
height=height,
strength=strength,
guidance_scale=guidance,
num_inference_steps=steps,
).images
return images[0]
@spaces.GPU(enable_queue=True)
def inpaint(ip, image_editor, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps):
inpaint_pipeline.to("cuda")
print(image_editor)
image = image_editor['background'].convert('RGB')
mask = Image.new("RGBA", image_editor["layers"][0].size, "WHITE")
mask.paste(image_editor["layers"][0], (0, 0), image_editor["layers"][0])
mask = ImageOps.invert(mask.convert('L'))
ip.thumbnail((1024, 1024))
image.thumbnail((1024, 1024))
mask.thumbnail((1024, 1024))
inpaint_pipeline.set_ip_adapter_scale(ip_scale)
images = inpaint_pipeline(
prompt=prompt,
image=image,
mask_image=mask,
ip_adapter_image=ip,
negative_prompt=neg_prompt,
width=width,
height=height,
strength=strength,
guidance_scale=guidance,
num_inference_steps=steps,
).images
return images[0]
with gr.Blocks() as demo:
gr.Markdown("""
# IP-Adapter Playground
by [Tony Assi](https://www.tonyassi.com/)
""")
with gr.Row():
with gr.Tab("Text-to-Image"):
text_ip = gr.Image(label='IP-Adapter Image', type='pil')
text_prompt = gr.Textbox(label='Prompt')
text_button = gr.Button("Generate")
with gr.Tab("Image-to-Image"):
image_ip = gr.Image(label='IP-Adapter Image', type='pil')
image_image = gr.Image(label='Image', type='pil')
image_prompt = gr.Textbox(label='Prompt')
image_button = gr.Button("Generate")
with gr.Tab("Inpainting"):
inpaint_ip = gr.Image(label='IP-Adapter Image', type='pil')
inpaint_editor = gr.ImageMask(type='pil')
inpaint_prompt = gr.Textbox(label='Prompt')
inpaint_button = gr.Button("Generate")
output_image = gr.Image(label='Result')
with gr.Accordion("Advanced Settings", open=False):
neg_prompt = gr.Textbox(label='Negative Prompt', value='ugly, deformed, nsfw')
width_slider = gr.Slider(256, 1024, value=1024, step=8, label="Width")
height_slider = gr.Slider(256, 1024, value=1024, step=8, label="Height")
ip_scale_slider = gr.Slider(0.0, 3.0, value=0.8, label="IP-Adapter Scale")
strength_slider = gr.Slider(0.0, 1.0, value=0.7, label="Strength")
guidance_slider = gr.Slider(1.0, 15.0, value=7.5, label="Guidance")
steps_slider = gr.Slider(50, 100, value=75, step=1, label="Steps")
gr.Examples(
[["./images/img1.jpg", "Paris Hilton", "ugly, deformed, nsfw", 1024, 1024, 0.8, 0.7, 7.5, 75]],
[text_ip, text_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider],
output_image,
text_to_image,
cache_examples='lazy',
label='Text-to-Image Example'
)
gr.Examples(
[["./images/img1.jpg", "./images/tony.jpg", "photo", "ugly, deformed, nsfw", 1024, 1024, 0.8, 0.7, 7.5, 75]],
[image_ip, image_image, image_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider],
output_image,
image_to_image,
cache_examples='lazy',
label='Image-to-Image Example'
)
text_button.click(text_to_image, inputs=[text_ip, text_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image)
image_button.click(image_to_image, inputs=[image_ip, image_image, image_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image)
inpaint_button.click(inpaint, inputs=[inpaint_ip, inpaint_editor, inpaint_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image)
demo.launch()