Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting, AutoencoderKL | |
from diffusers.utils import load_image | |
import torch | |
from PIL import Image, ImageOps | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
text_pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") | |
text_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
text_pipeline.set_ip_adapter_scale(0.6) | |
image_pipeline = AutoPipelineForImage2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") | |
image_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
image_pipeline.set_ip_adapter_scale(0.6) | |
inpaint_pipeline = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") | |
inpaint_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
inpaint_pipeline.set_ip_adapter_scale(0.6) | |
def text_to_image(ip, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps): | |
text_pipeline.to("cuda") | |
ip.thumbnail((1024, 1024)) | |
text_pipeline.set_ip_adapter_scale(ip_scale) | |
images = text_pipeline( | |
prompt=prompt, | |
ip_adapter_image=ip, | |
negative_prompt=neg_prompt, | |
width=width, | |
height=height, | |
strength=strength, | |
guidance_scale=guidance, | |
num_inference_steps=steps, | |
).images | |
return images[0] | |
def image_to_image(ip, image, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps): | |
image_pipeline.to("cuda") | |
ip.thumbnail((1024, 1024)) | |
image.thumbnail((1024, 1024)) | |
image_pipeline.set_ip_adapter_scale(ip_scale) | |
images = image_pipeline( | |
prompt=prompt, | |
image=image, | |
ip_adapter_image=ip, | |
negative_prompt=neg_prompt, | |
width=width, | |
height=height, | |
strength=strength, | |
guidance_scale=guidance, | |
num_inference_steps=steps, | |
).images | |
return images[0] | |
def inpaint(ip, image_editor, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps): | |
inpaint_pipeline.to("cuda") | |
print(image_editor) | |
image = image_editor['background'].convert('RGB') | |
mask = Image.new("RGBA", image_editor["layers"][0].size, "WHITE") | |
mask.paste(image_editor["layers"][0], (0, 0), image_editor["layers"][0]) | |
mask = ImageOps.invert(mask.convert('L')) | |
ip.thumbnail((1024, 1024)) | |
image.thumbnail((1024, 1024)) | |
mask.thumbnail((1024, 1024)) | |
inpaint_pipeline.set_ip_adapter_scale(ip_scale) | |
images = inpaint_pipeline( | |
prompt=prompt, | |
image=image, | |
mask_image=mask, | |
ip_adapter_image=ip, | |
negative_prompt=neg_prompt, | |
width=width, | |
height=height, | |
strength=strength, | |
guidance_scale=guidance, | |
num_inference_steps=steps, | |
).images | |
return images[0] | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# IP-Adapter Playground | |
by [Tony Assi](https://www.tonyassi.com/) | |
""") | |
with gr.Row(): | |
with gr.Tab("Text-to-Image"): | |
text_ip = gr.Image(label='IP-Adapter Image', type='pil') | |
text_prompt = gr.Textbox(label='Prompt') | |
text_button = gr.Button("Generate") | |
with gr.Tab("Image-to-Image"): | |
image_ip = gr.Image(label='IP-Adapter Image', type='pil') | |
image_image = gr.Image(label='Image', type='pil') | |
image_prompt = gr.Textbox(label='Prompt') | |
image_button = gr.Button("Generate") | |
with gr.Tab("Inpainting"): | |
inpaint_ip = gr.Image(label='IP-Adapter Image', type='pil') | |
inpaint_editor = gr.ImageMask(type='pil') | |
inpaint_prompt = gr.Textbox(label='Prompt') | |
inpaint_button = gr.Button("Generate") | |
output_image = gr.Image(label='Result') | |
with gr.Accordion("Advanced Settings", open=False): | |
neg_prompt = gr.Textbox(label='Negative Prompt', value='ugly, deformed, nsfw') | |
width_slider = gr.Slider(256, 1024, value=1024, step=8, label="Width") | |
height_slider = gr.Slider(256, 1024, value=1024, step=8, label="Height") | |
ip_scale_slider = gr.Slider(0.0, 3.0, value=0.8, label="IP-Adapter Scale") | |
strength_slider = gr.Slider(0.0, 1.0, value=0.7, label="Strength") | |
guidance_slider = gr.Slider(1.0, 15.0, value=7.5, label="Guidance") | |
steps_slider = gr.Slider(50, 100, value=75, step=1, label="Steps") | |
gr.Examples( | |
[["./images/img1.jpg", "Paris Hilton", "ugly, deformed, nsfw", 1024, 1024, 0.8, 0.7, 7.5, 75]], | |
[text_ip, text_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], | |
output_image, | |
text_to_image, | |
cache_examples='lazy', | |
label='Text-to-Image Example' | |
) | |
gr.Examples( | |
[["./images/img1.jpg", "./images/tony.jpg", "photo", "ugly, deformed, nsfw", 1024, 1024, 0.8, 0.7, 7.5, 75]], | |
[image_ip, image_image, image_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], | |
output_image, | |
image_to_image, | |
cache_examples='lazy', | |
label='Image-to-Image Example' | |
) | |
text_button.click(text_to_image, inputs=[text_ip, text_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image) | |
image_button.click(image_to_image, inputs=[image_ip, image_image, image_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image) | |
inpaint_button.click(inpaint, inputs=[inpaint_ip, inpaint_editor, inpaint_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image) | |
demo.launch() |