import spaces import gradio as gr from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting, AutoencoderKL from diffusers.utils import load_image import torch from PIL import Image, ImageOps vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) text_pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") text_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") text_pipeline.set_ip_adapter_scale(0.6) image_pipeline = AutoPipelineForImage2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") image_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") image_pipeline.set_ip_adapter_scale(0.6) inpaint_pipeline = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") inpaint_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") inpaint_pipeline.set_ip_adapter_scale(0.6) #@spaces.GPU(enable_queue=True) def text_to_image(ip, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps): text_pipeline.to("cuda") ip.thumbnail((1024, 1024)) text_pipeline.set_ip_adapter_scale(ip_scale) images = text_pipeline( prompt=prompt, ip_adapter_image=ip, negative_prompt=neg_prompt, width=width, height=height, strength=strength, guidance_scale=guidance, num_inference_steps=steps, ).images return images[0] #@spaces.GPU(enable_queue=True) def image_to_image(ip, image, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps): image_pipeline.to("cuda") ip.thumbnail((1024, 1024)) image.thumbnail((1024, 1024)) image_pipeline.set_ip_adapter_scale(ip_scale) images = image_pipeline( prompt=prompt, image=image, ip_adapter_image=ip, negative_prompt=neg_prompt, width=width, height=height, strength=strength, guidance_scale=guidance, num_inference_steps=steps, ).images return images[0] #@spaces.GPU(enable_queue=True) def inpaint(ip, image_editor, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps): inpaint_pipeline.to("cuda") print(image_editor) image = image_editor['background'].convert('RGB') mask = Image.new("RGBA", image_editor["layers"][0].size, "WHITE") mask.paste(image_editor["layers"][0], (0, 0), image_editor["layers"][0]) mask = ImageOps.invert(mask.convert('L')) ip.thumbnail((1024, 1024)) image.thumbnail((1024, 1024)) mask.thumbnail((1024, 1024)) inpaint_pipeline.set_ip_adapter_scale(ip_scale) images = inpaint_pipeline( prompt=prompt, image=image, mask_image=mask, ip_adapter_image=ip, negative_prompt=neg_prompt, width=width, height=height, strength=strength, guidance_scale=guidance, num_inference_steps=steps, ).images return images[0] with gr.Blocks() as demo: gr.Markdown(""" # IP-Adapter Playground by [Tony Assi](https://www.tonyassi.com/) """) with gr.Row(): with gr.Tab("Text-to-Image"): text_ip = gr.Image(label='IP-Adapter Image', type='pil') text_prompt = gr.Textbox(label='Prompt') text_button = gr.Button("Generate") with gr.Tab("Image-to-Image"): image_ip = gr.Image(label='IP-Adapter Image', type='pil') image_image = gr.Image(label='Image', type='pil') image_prompt = gr.Textbox(label='Prompt') image_button = gr.Button("Generate") with gr.Tab("Inpainting"): inpaint_ip = gr.Image(label='IP-Adapter Image', type='pil') inpaint_editor = gr.ImageMask(type='pil') inpaint_prompt = gr.Textbox(label='Prompt') inpaint_button = gr.Button("Generate") output_image = gr.Image(label='Result') with gr.Accordion("Advanced Settings", open=False): neg_prompt = gr.Textbox(label='Negative Prompt', value='ugly, deformed, nsfw') width_slider = gr.Slider(256, 1024, value=1024, step=8, label="Width") height_slider = gr.Slider(256, 1024, value=1024, step=8, label="Height") ip_scale_slider = gr.Slider(0.0, 3.0, value=0.8, label="IP-Adapter Scale") strength_slider = gr.Slider(0.0, 1.0, value=0.7, label="Strength") guidance_slider = gr.Slider(1.0, 15.0, value=7.5, label="Guidance") steps_slider = gr.Slider(50, 100, value=75, step=1, label="Steps") gr.Examples( [["./images/img1.jpg", "Paris Hilton", "ugly, deformed, nsfw", 1024, 1024, 0.8, 0.7, 7.5, 75]], [text_ip, text_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], output_image, text_to_image, cache_examples='lazy', label='Text-to-Image Example' ) gr.Examples( [["./images/img1.jpg", "./images/tony.jpg", "photo", "ugly, deformed, nsfw", 1024, 1024, 0.8, 0.7, 7.5, 75]], [image_ip, image_image, image_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], output_image, image_to_image, cache_examples='lazy', label='Image-to-Image Example' ) text_button.click(text_to_image, inputs=[text_ip, text_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image) image_button.click(image_to_image, inputs=[image_ip, image_image, image_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image) inpaint_button.click(inpaint, inputs=[inpaint_ip, inpaint_editor, inpaint_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image) demo.launch()