Spaces:
Running
Running
File size: 7,956 Bytes
9ae3d29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import glob
import mimetypes
import os
import platform
import shutil
import ssl
import subprocess
import tempfile
import urllib
from pathlib import Path
from typing import List, Optional
import onnxruntime
from tqdm import tqdm
import DeepFakeAI.globals
from DeepFakeAI import wording
TEMP_DIRECTORY_PATH = os.path.join(tempfile.gettempdir(), 'DeepFakeAI')
TEMP_OUTPUT_NAME = 'temp.mp4'
# monkey patch ssl
if platform.system().lower() == 'darwin':
ssl._create_default_https_context = ssl._create_unverified_context
def run_ffmpeg(args : List[str]) -> bool:
commands = [ 'ffmpeg', '-hide_banner', '-loglevel', 'error' ]
commands.extend(args)
try:
subprocess.check_output(commands, stderr = subprocess.STDOUT)
return True
except subprocess.CalledProcessError:
return False
def detect_fps(target_path : str) -> Optional[float]:
commands = [ 'ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', 'stream=r_frame_rate', '-of', 'default=noprint_wrappers = 1:nokey = 1', target_path ]
output = subprocess.check_output(commands).decode().strip().split('/')
try:
numerator, denominator = map(int, output)
return numerator / denominator
except (ValueError, ZeroDivisionError):
return None
def extract_frames(target_path : str, fps : float) -> bool:
temp_directory_path = get_temp_directory_path(target_path)
temp_frame_quality = round(31 - (DeepFakeAI.globals.temp_frame_quality * 0.31))
trim_frame_start = DeepFakeAI.globals.trim_frame_start
trim_frame_end = DeepFakeAI.globals.trim_frame_end
commands = [ '-hwaccel', 'auto', '-i', target_path, '-q:v', str(temp_frame_quality), '-pix_fmt', 'rgb24', ]
if trim_frame_start is not None and trim_frame_end is not None:
commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
elif trim_frame_start is not None:
commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ',fps=' + str(fps) ])
elif trim_frame_end is not None:
commands.extend([ '-vf', 'trim=end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
else:
commands.extend([ '-vf', 'fps=' + str(fps) ])
commands.extend([os.path.join(temp_directory_path, '%04d.' + DeepFakeAI.globals.temp_frame_format)])
return run_ffmpeg(commands)
def create_video(target_path : str, fps : float) -> bool:
temp_output_path = get_temp_output_path(target_path)
temp_directory_path = get_temp_directory_path(target_path)
output_video_quality = round(51 - (DeepFakeAI.globals.output_video_quality * 0.5))
commands = [ '-hwaccel', 'auto', '-r', str(fps), '-i', os.path.join(temp_directory_path, '%04d.' + DeepFakeAI.globals.temp_frame_format), '-c:v', DeepFakeAI.globals.output_video_encoder ]
if DeepFakeAI.globals.output_video_encoder in [ 'libx264', 'libx265', 'libvpx' ]:
commands.extend([ '-crf', str(output_video_quality) ])
if DeepFakeAI.globals.output_video_encoder in [ 'h264_nvenc', 'hevc_nvenc' ]:
commands.extend([ '-cq', str(output_video_quality) ])
commands.extend([ '-pix_fmt', 'yuv420p', '-vf', 'colorspace=bt709:iall=bt601-6-625', '-y', temp_output_path ])
return run_ffmpeg(commands)
def restore_audio(target_path : str, output_path : str) -> None:
fps = detect_fps(target_path)
trim_frame_start = DeepFakeAI.globals.trim_frame_start
trim_frame_end = DeepFakeAI.globals.trim_frame_end
temp_output_path = get_temp_output_path(target_path)
commands = [ '-hwaccel', 'auto', '-i', temp_output_path, '-i', target_path ]
if trim_frame_start is None and trim_frame_end is None:
commands.extend([ '-c:a', 'copy' ])
else:
if trim_frame_start is not None:
start_time = trim_frame_start / fps
commands.extend([ '-ss', str(start_time) ])
else:
commands.extend([ '-ss', '0' ])
if trim_frame_end is not None:
end_time = trim_frame_end / fps
commands.extend([ '-to', str(end_time) ])
commands.extend([ '-c:a', 'aac' ])
commands.extend([ '-map', '0:v:0', '-map', '1:a:0', '-y', output_path ])
done = run_ffmpeg(commands)
if not done:
move_temp(target_path, output_path)
def get_temp_frame_paths(target_path : str) -> List[str]:
temp_directory_path = get_temp_directory_path(target_path)
return glob.glob((os.path.join(glob.escape(temp_directory_path), '*.' + DeepFakeAI.globals.temp_frame_format)))
def get_temp_directory_path(target_path : str) -> str:
target_name, _ = os.path.splitext(os.path.basename(target_path))
return os.path.join(TEMP_DIRECTORY_PATH, target_name)
def get_temp_output_path(target_path : str) -> str:
temp_directory_path = get_temp_directory_path(target_path)
return os.path.join(temp_directory_path, TEMP_OUTPUT_NAME)
def normalize_output_path(source_path : str, target_path : str, output_path : str) -> Optional[str]:
if source_path and target_path and output_path:
source_name, _ = os.path.splitext(os.path.basename(source_path))
target_name, target_extension = os.path.splitext(os.path.basename(target_path))
if os.path.isdir(output_path):
return os.path.join(output_path, source_name + '-' + target_name + target_extension)
return output_path
def create_temp(target_path : str) -> None:
temp_directory_path = get_temp_directory_path(target_path)
Path(temp_directory_path).mkdir(parents = True, exist_ok = True)
def move_temp(target_path : str, output_path : str) -> None:
temp_output_path = get_temp_output_path(target_path)
if os.path.isfile(temp_output_path):
if os.path.isfile(output_path):
os.remove(output_path)
shutil.move(temp_output_path, output_path)
def clear_temp(target_path : str) -> None:
temp_directory_path = get_temp_directory_path(target_path)
parent_directory_path = os.path.dirname(temp_directory_path)
if not DeepFakeAI.globals.keep_temp and os.path.isdir(temp_directory_path):
shutil.rmtree(temp_directory_path)
if os.path.exists(parent_directory_path) and not os.listdir(parent_directory_path):
os.rmdir(parent_directory_path)
def is_image(image_path : str) -> bool:
if image_path and os.path.isfile(image_path):
mimetype, _ = mimetypes.guess_type(image_path)
return bool(mimetype and mimetype.startswith('image/'))
return False
def is_video(video_path : str) -> bool:
if video_path and os.path.isfile(video_path):
mimetype, _ = mimetypes.guess_type(video_path)
return bool(mimetype and mimetype.startswith('video/'))
return False
def conditional_download(download_directory_path : str, urls : List[str]) -> None:
if not os.path.exists(download_directory_path):
os.makedirs(download_directory_path)
for url in urls:
download_file_path = os.path.join(download_directory_path, os.path.basename(url))
if not os.path.exists(download_file_path):
request = urllib.request.urlopen(url) # type: ignore[attr-defined]
total = int(request.headers.get('Content-Length', 0))
with tqdm(total = total, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024) as progress:
urllib.request.urlretrieve(url, download_file_path, reporthook = lambda count, block_size, total_size: progress.update(block_size)) # type: ignore[attr-defined]
def resolve_relative_path(path : str) -> str:
return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
def list_module_names(path : str) -> Optional[List[str]]:
if os.path.exists(path):
files = os.listdir(path)
return [Path(file).stem for file in files if not Path(file).stem.startswith('__')]
return None
def encode_execution_providers(execution_providers : List[str]) -> List[str]:
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
def decode_execution_providers(execution_providers : List[str]) -> List[str]:
return [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers())) if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
|