Spaces:
Running
Running
Update
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🏃
|
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
@@ -27,7 +27,7 @@ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gr
|
|
27 |
Can be either `gradio`, `streamlit`, or `static`
|
28 |
|
29 |
`sdk_version` : _string_
|
30 |
-
Only applicable for `streamlit` SDK.
|
31 |
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
32 |
|
33 |
`app_file`: _string_
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.32
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
27 |
Can be either `gradio`, `streamlit`, or `static`
|
28 |
|
29 |
`sdk_version` : _string_
|
30 |
+
Only applicable for `streamlit` SDK.
|
31 |
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
32 |
|
33 |
`app_file`: _string_
|
app.py
CHANGED
@@ -2,8 +2,6 @@
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
-
import argparse
|
6 |
-
import functools
|
7 |
import os
|
8 |
import pathlib
|
9 |
import tarfile
|
@@ -15,56 +13,42 @@ import numpy as np
|
|
15 |
import PIL.Image
|
16 |
import tensorflow as tf
|
17 |
|
18 |
-
|
19 |
-
DESCRIPTION = 'This is an unofficial demo for https://github.com/KichangKim/DeepDanbooru.'
|
20 |
-
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.deepdanbooru" alt="visitor badge"/></center>'
|
21 |
-
|
22 |
-
HF_TOKEN = os.environ['HF_TOKEN']
|
23 |
-
MODEL_REPO = 'hysts/DeepDanbooru'
|
24 |
-
MODEL_FILENAME = 'model-resnet_custom_v3.h5'
|
25 |
-
LABEL_FILENAME = 'tags.txt'
|
26 |
-
|
27 |
-
|
28 |
-
def parse_args() -> argparse.Namespace:
|
29 |
-
parser = argparse.ArgumentParser()
|
30 |
-
parser.add_argument('--score-slider-step', type=float, default=0.05)
|
31 |
-
parser.add_argument('--score-threshold', type=float, default=0.5)
|
32 |
-
parser.add_argument('--share', action='store_true')
|
33 |
-
return parser.parse_args()
|
34 |
|
35 |
|
36 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
37 |
image_dir = pathlib.Path('images')
|
38 |
if not image_dir.exists():
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
use_auth_token=HF_TOKEN)
|
44 |
with tarfile.open(path) as f:
|
45 |
f.extractall()
|
46 |
return sorted(image_dir.glob('*'))
|
47 |
|
48 |
|
49 |
def load_model() -> tf.keras.Model:
|
50 |
-
path = huggingface_hub.hf_hub_download(
|
51 |
-
|
52 |
-
use_auth_token=HF_TOKEN)
|
53 |
model = tf.keras.models.load_model(path)
|
54 |
return model
|
55 |
|
56 |
|
57 |
def load_labels() -> list[str]:
|
58 |
-
path = huggingface_hub.hf_hub_download(
|
59 |
-
|
60 |
-
use_auth_token=HF_TOKEN)
|
61 |
with open(path) as f:
|
62 |
labels = [line.strip() for line in f.readlines()]
|
63 |
return labels
|
64 |
|
65 |
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
_, height, width, _ = model.input_shape
|
69 |
image = np.asarray(image)
|
70 |
image = tf.image.resize(image,
|
@@ -84,39 +68,30 @@ def predict(image: PIL.Image.Image, score_threshold: float,
|
|
84 |
return res
|
85 |
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
gr.
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
allow_flagging='never',
|
115 |
-
).launch(
|
116 |
-
enable_queue=True,
|
117 |
-
share=args.share,
|
118 |
-
)
|
119 |
-
|
120 |
-
|
121 |
-
if __name__ == '__main__':
|
122 |
-
main()
|
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
|
|
|
|
5 |
import os
|
6 |
import pathlib
|
7 |
import tarfile
|
|
|
13 |
import PIL.Image
|
14 |
import tensorflow as tf
|
15 |
|
16 |
+
DESCRIPTION = '# [KichangKim/DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
20 |
image_dir = pathlib.Path('images')
|
21 |
if not image_dir.exists():
|
22 |
+
path = huggingface_hub.hf_hub_download(
|
23 |
+
'public-data/sample-images-TADNE',
|
24 |
+
'images.tar.gz',
|
25 |
+
repo_type='dataset')
|
|
|
26 |
with tarfile.open(path) as f:
|
27 |
f.extractall()
|
28 |
return sorted(image_dir.glob('*'))
|
29 |
|
30 |
|
31 |
def load_model() -> tf.keras.Model:
|
32 |
+
path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru',
|
33 |
+
'model-resnet_custom_v3.h5')
|
|
|
34 |
model = tf.keras.models.load_model(path)
|
35 |
return model
|
36 |
|
37 |
|
38 |
def load_labels() -> list[str]:
|
39 |
+
path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru',
|
40 |
+
'tags.txt')
|
|
|
41 |
with open(path) as f:
|
42 |
labels = [line.strip() for line in f.readlines()]
|
43 |
return labels
|
44 |
|
45 |
|
46 |
+
model = load_model()
|
47 |
+
labels = load_labels()
|
48 |
+
|
49 |
+
|
50 |
+
def predict(image: PIL.Image.Image,
|
51 |
+
score_threshold: float) -> dict[str, float]:
|
52 |
_, height, width, _ = model.input_shape
|
53 |
image = np.asarray(image)
|
54 |
image = tf.image.resize(image,
|
|
|
68 |
return res
|
69 |
|
70 |
|
71 |
+
image_paths = load_sample_image_paths()
|
72 |
+
examples = [[path.as_posix(), 0.5] for path in image_paths]
|
73 |
+
|
74 |
+
with gr.Blocks(css='style.css') as demo:
|
75 |
+
gr.Markdown(DESCRIPTION)
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column():
|
78 |
+
image = gr.Image(label='Input', type='pil')
|
79 |
+
score_threshold = gr.Slider(label='Score threshold',
|
80 |
+
minimum=0,
|
81 |
+
maximum=1,
|
82 |
+
step=0.05,
|
83 |
+
value=0.5)
|
84 |
+
run_button = gr.Button('Run')
|
85 |
+
with gr.Column():
|
86 |
+
result = gr.Label(label='Output')
|
87 |
+
gr.Examples(examples=examples,
|
88 |
+
inputs=[image, score_threshold],
|
89 |
+
outputs=result,
|
90 |
+
fn=predict,
|
91 |
+
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
|
92 |
+
|
93 |
+
run_button.click(fn=predict,
|
94 |
+
inputs=[image, score_threshold],
|
95 |
+
outputs=result,
|
96 |
+
api_name='predict')
|
97 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|