Spaces:
Running
Running
File size: 8,237 Bytes
3ea2029 ee14fdf 4d0b176 3ea2029 6e9b1b6 ec4bc2b 6e9b1b6 ec4bc2b ee14fdf 3ea2029 6e9b1b6 ec4bc2b 6e9b1b6 ec4bc2b ebcb006 ec4bc2b ebcb006 9c33ed5 ec4bc2b c575ad5 ec4bc2b 7cb3b05 4d0b176 9509e00 ebcb006 ec4bc2b 9509e00 ec4bc2b 4d0b176 6e9b1b6 245de5e 2e1c1e0 6dfe6c8 4d0b176 c575ad5 4d0b176 c575ad5 4d0b176 21e05f5 deca380 21e05f5 4d0b176 21e05f5 4d0b176 7775d86 21e05f5 4d0b176 21e05f5 4d0b176 c575ad5 4d0b176 6e9b1b6 a578853 6e9b1b6 a578853 4d0b176 ac47311 4d0b176 cb13df9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
from PIL import Image, ImageFilter, ImageOps
import cv2
import numpy as np
import os
from collections import defaultdict
from skimage.color import deltaE_ciede2000, rgb2lab
import zipfile
def DoG_filter(image, kernel_size=0, sigma=1.0, k_sigma=2.0, gamma=1.5):
g1 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma)
g2 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma * k_sigma)
return g1 - gamma * g2
def XDoG_filter(image, kernel_size=0, sigma=1.4, k_sigma=1.6, epsilon=0, phi=10, gamma=0.98):
epsilon /= 255
dog = DoG_filter(image, kernel_size, sigma, k_sigma, gamma)
dog /= dog.max()
e = 1 + np.tanh(phi * (dog - epsilon))
e[e >= 1] = 1
return (e * 255).astype('uint8')
def binarize_image(image):
_, binarized = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return binarized
def process_XDoG(image_path):
kernel_size=0
sigma=1.4
k_sigma=1.6
epsilon=0
phi=10
gamma=0.98
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
xdog_image = XDoG_filter(image, kernel_size, sigma, k_sigma, epsilon, phi, gamma)
binarized_image = binarize_image(xdog_image)
final_image = Image.fromarray(binarized_image)
return final_image
def replace_color(image, color_1, blur_radius=2):
data = np.array(image)
original_shape = data.shape
channels = original_shape[2] if len(original_shape) > 2 else 1 # チャンネル数を確認
data = data.reshape(-1, channels)
color_1 = np.array(color_1)
matches = np.all(data[:, :3] == color_1, axis=1)
nochange_count = 0
mask = np.zeros(data.shape[0], dtype=bool)
while np.any(matches):
new_matches = np.zeros_like(matches)
match_num = np.sum(matches)
for i in range(len(data)):
if matches[i]:
x, y = divmod(i, original_shape[1])
neighbors = [
(x, y-1), (x, y+1), (x-1, y), (x+1, y)
]
valid_neighbors = []
for nx, ny in neighbors:
if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
ni = nx * original_shape[1] + ny
if not np.all(data[ni, :3] == color_1, axis=0):
valid_neighbors.append(data[ni, :3])
if valid_neighbors:
new_color = np.mean(valid_neighbors, axis=0).astype(np.uint8)
data[i, :3] = new_color
data[i, 3] = 255
mask[i] = True
else:
new_matches[i] = True
matches = new_matches
if match_num == np.sum(matches):
nochange_count += 1
if nochange_count > 5:
break
data = data.reshape(original_shape)
mask = mask.reshape(original_shape[:2])
result_image = Image.fromarray(data, 'RGBA')
blurred_image = result_image.filter(ImageFilter.GaussianBlur(radius=blur_radius))
blurred_data = np.array(blurred_image)
np.copyto(data, blurred_data, where=mask[..., None])
return Image.fromarray(data, 'RGBA')
def generate_distant_colors(consolidated_colors, distance_threshold):
consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
max_attempts = 10000
for _ in range(max_attempts):
random_rgb = np.random.randint(0, 256, size=3)
random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
if all(deltaE_ciede2000(base_color_lab, random_lab) > distance_threshold for base_color_lab in consolidated_lab):
return tuple(random_rgb)
return (128, 128, 128)
def consolidate_colors(major_colors, threshold):
colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
i = 0
while i < len(colors_lab):
j = i + 1
while j < len(colors_lab):
if deltaE_ciede2000(colors_lab[i], colors_lab[j]) < threshold:
if major_colors[i][1] >= major_colors[j][1]:
major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
major_colors.pop(j)
colors_lab.pop(j)
else:
major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
major_colors.pop(i)
colors_lab.pop(i)
continue
j += 1
i += 1
return major_colors
def get_major_colors(image, threshold_percentage=0.01):
if image.mode != 'RGB':
image = image.convert('RGB')
color_count = defaultdict(int)
for pixel in image.getdata():
color_count[pixel] += 1
total_pixels = image.width * image.height
major_colors = [(color, count) for color, count in color_count.items() if (count / total_pixels) >= threshold_percentage]
return major_colors
def line_color(image, mask, new_color):
data = np.array(image)
data[mask, :3] = new_color
return Image.fromarray(data)
def process_image(image, lineart):
if image.mode != 'RGBA':
image = image.convert('RGBA')
lineart = lineart.point(lambda x: 0 if x < 200 else 255)
lineart = ImageOps.invert(lineart)
kernel = np.ones((3, 3), np.uint8)
lineart = cv2.dilate(np.array(lineart), kernel, iterations=1)
lineart = Image.fromarray(lineart)
mask = np.array(lineart) == 255
major_colors = get_major_colors(image, threshold_percentage=0.05)
major_colors = consolidate_colors(major_colors, 10)
new_color_1 = generate_distant_colors(major_colors, 100)
filled_image = line_color(image, mask, new_color_1)
replace_color_image = replace_color(filled_image, new_color_1, 2).convert('RGB')
return replace_color_image
def zip_files(zip_files, zip_path):
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file_path in zip_files:
zipf.write(file_path, arcname=os.path.basename(file_path))
class webui:
def __init__(self):
self.demo = gr.Blocks()
def main(self, image_path):
image = Image.open(image_path)
#拡張子を取り除いたファイル名を取得
image_name = os.path.splitext(image_path)[0]
alpha = image.getchannel('A') if image.mode == 'RGBA' else None
image = Image.open(image_path).convert('RGBA')
rgb_image = image.convert('RGB')
lineart = process_XDoG(image_path).convert('L')
replace_color_image = process_image(rgb_image, lineart).convert('RGBA')
if alpha:
replace_color_image.putalpha(alpha)
replace_color_image_path = f"{image_name}_noline.png"
replace_color_image.save(replace_color_image_path)
lineart_image = lineart.convert('RGBA')
lineart_alpha = 255 - np.array(lineart)
lineart_image.putalpha(Image.fromarray(lineart_alpha))
lineart_image_path = f"{image_name}_lineart.png"
lineart_image.save(lineart_image_path)
zip_files_list = [replace_color_image_path, lineart_image_path]
zip_path = f"{image_name}.zip"
zip_files(zip_files_list, zip_path)
outputs = [replace_color_image, lineart_image]
return outputs, zip_path
def launch(self, share):
with self.demo:
with gr.Row():
with gr.Column():
input_image = gr.Image(type='filepath', image_mode="RGBA", label="Original Image(png画像にのみ対応しています)")
submit = gr.Button(value="Start")
with gr.Row():
with gr.Column():
with gr.Tab("output"):
output_0 = gr.Gallery(format="png")
output_file = gr.File()
submit.click(
self.main,
inputs=[input_image],
outputs=[output_0, output_file]
)
self.demo.queue()
self.demo.launch(share=share)
if __name__ == "__main__":
ui = webui()
ui.launch(share=True) |