sketch2lineart / app.py
tori29umai's picture
app.py
2b32e3d
raw
history blame
4.78 kB
import spaces
import gradio as gr
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, DDIMScheduler
from compel import Compel, ReturnedEmbeddingsType
from PIL import Image
import os
import time
from utils.utils import load_cn_model, load_cn_config, load_tagger_model, load_lora_model, resize_image_aspect_ratio, base_generation
from utils.prompt_analysis import PromptAnalysis
class Img2Img:
def __init__(self):
self.setup_paths()
self.setup_models()
self.compel = self.setup_compel()
self.demo = self.layout()
def setup_paths(self):
self.path = os.getcwd()
self.cn_dir = f"{self.path}/controlnet"
self.tagger_dir = f"{self.path}/tagger"
self.lora_dir = f"{self.path}/lora"
os.makedirs(self.cn_dir, exist_ok=True)
os.makedirs(self.tagger_dir, exist_ok=True)
os.makedirs(self.lora_dir, exist_ok=True)
def setup_models(self):
load_cn_model(self.cn_dir)
load_cn_config(self.cn_dir)
load_tagger_model(self.tagger_dir)
load_lora_model(self.lora_dir)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.dtype = torch.float16
self.model = "cagliostrolab/animagine-xl-3.1"
self.scheduler = DDIMScheduler.from_pretrained(self.model, subfolder="scheduler")
self.controlnet = ControlNetModel.from_pretrained(self.cn_dir, torch_dtype=self.dtype, use_safetensors=True)
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
self.model,
controlnet=self.controlnet,
torch_dtype=self.dtype,
use_safetensors=True,
scheduler=self.scheduler,
)
self.pipe.load_lora_weights(self.lora_dir, weight_name="sdxl_BWLine.safetensors")
self.pipe = self.pipe.to(self.device)
def setup_compel(self):
return Compel(
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
)
def layout(self):
css = """
#intro{
max-width: 32rem;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
self.input_image_path = gr.Image(label="ๅ…ฅๅŠ›็”ปๅƒ", type='filepath')
self.prompt_analysis = PromptAnalysis(self.tagger_dir)
self.prompt, self.negative_prompt = self.prompt_analysis.layout(self.input_image_path)
self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="็ทš็”ปๅฟ ๅฎŸๅบฆ")
generate_button = gr.Button("็”Ÿๆˆ")
with gr.Column():
self.output_image = gr.Image(type="pil", label="็”Ÿๆˆ็”ปๅƒ")
generate_button.click(
fn=self.predict,
inputs=[self.input_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
outputs=self.output_image
)
return demo
@spaces.GPU
def predict(self, input_image_path, prompt, negative_prompt, controlnet_scale):
input_image_pil = Image.open(input_image_path)
base_size = input_image_pil.size
resize_image = resize_image_aspect_ratio(input_image_pil)
resize_image_size = resize_image.size
width, height = resize_image_size
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
conditioning, pooled = self.compel([prompt, negative_prompt])
generator = torch.manual_seed(0)
last_time = time.time()
output_image = self.pipe(
image=white_base_pil,
control_image=resize_image,
strength=1.0,
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
width=width,
height=height,
controlnet_conditioning_scale=float(controlnet_scale),
controlnet_start=0.0,
controlnet_end=1.0,
generator=generator,
num_inference_steps=30,
guidance_scale=8.5,
eta=1.0,
)
print(f"Time taken: {time.time() - last_time}")
output_image = output_image.resize(base_size, Image.LANCZOS)
return output_image
img2img = Img2Img()
img2img.demo.launch()