Spaces:
Sleeping
Sleeping
File size: 5,643 Bytes
9a7ccba 9beb9e3 ba9ed60 09e145b 9a7ccba 55e40d9 9a7ccba 55e40d9 dc15a5c 55e40d9 ba9ed60 09e145b ba9ed60 21adb3e 55e40d9 9beb9e3 0c0ed04 beeaade 9beb9e3 beeaade 0c0ed04 9beb9e3 55e40d9 9a7ccba 09e145b 55e40d9 ba9ed60 55e40d9 09e145b ba9ed60 21adb3e 09e145b 9a7ccba 55e40d9 9beb9e3 55e40d9 9beb9e3 55e40d9 09e145b 55e40d9 ba9ed60 09e145b 55e40d9 21adb3e dc15a5c 21adb3e 55e40d9 dc15a5c 55e40d9 09e145b 55e40d9 8fae716 beeaade |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
from transformers import pipeline
import PyPDF2
import markdown
import matplotlib.pyplot as plt
import io
import base64
from fpdf import FPDF
# Preload models
models = {
"distilbert-base-uncased-distilled-squad": "distilbert-base-uncased-distilled-squad",
"roberta-base-squad2": "deepset/roberta-base-squad2",
"bert-large-uncased-whole-word-masking-finetuned-squad": "bert-large-uncased-whole-word-masking-finetuned-squad",
"albert-base-v2": "twmkn9/albert-base-v2-squad2",
"xlm-roberta-large-squad2": "deepset/xlm-roberta-large-squad2"
}
loaded_models = {}
def load_model(model_name):
if model_name not in loaded_models:
loaded_models[model_name] = pipeline("question-answering", model=models[model_name])
return loaded_models[model_name]
def generate_score_chart(score):
plt.figure(figsize=(6, 4))
plt.bar(["Confidence Score"], [score], color='skyblue')
plt.ylim(0, 1)
plt.ylabel("Score")
plt.title("Confidence Score")
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
buf.seek(0)
return base64.b64encode(buf.getvalue()).decode()
def highlight_relevant_text(context, start, end):
highlighted_text = (
context[:start] +
'<mark style="background-color: yellow;">' +
context[start:end] +
'</mark>' +
context[end:]
)
return highlighted_text
def generate_pdf_report(question, answer, score, score_explanation, score_chart, highlighted_context):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, f"Question: {question}")
pdf.ln()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, f"Answer: {answer}")
pdf.ln()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, f"Confidence Score: {score}")
pdf.ln()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, f"Score Explanation: {score_explanation}")
pdf.ln()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, "Highlighted Context:")
pdf.ln()
pdf.set_font("Arial", size=10)
pdf.multi_cell(0, 10, highlighted_context)
pdf.ln()
# Add score chart image to PDF
score_chart_image = io.BytesIO(base64.b64decode(score_chart))
pdf.image(score_chart_image, x=10, y=pdf.get_y(), w=100)
# Save PDF to memory
pdf_output = io.BytesIO()
pdf.output(pdf_output)
pdf_output.seek(0)
return pdf_output
def answer_question(model_name, file, question, status):
status = "Loading model..."
model = load_model(model_name)
if file is not None:
file_name = file.name
if file_name.endswith(".pdf"):
pdf_reader = PyPDF2.PdfReader(file)
context = ""
for page_num in range(len(pdf_reader.pages)):
context += pdf_reader.pages[page_num].extract_text()
elif file_name.endswith(".md"):
context = file.read().decode('utf-8')
context = markdown.markdown(context)
else:
context = file.read().decode('utf-8')
else:
context = ""
result = model(question=question, context=context)
answer = result['answer']
score = result['score']
start = result['start']
end = result['end']
# Highlight relevant text
highlighted_context = highlight_relevant_text(context, start, end)
# Generate the score chart
score_chart = generate_score_chart(score)
# Explain score
score_explanation = f"The confidence score ranges from 0 to 1, where a higher score indicates higher confidence in the answer's correctness. In this case, the score is {score:.2f}. A score closer to 1 implies the model is very confident about the answer."
# Generate the PDF report
pdf_report = generate_pdf_report(question, answer, f"{score:.2f}", score_explanation, score_chart, highlighted_context)
status = "Model loaded"
return highlighted_context, f"{score:.2f}", score_explanation, score_chart, pdf_report, status
# Define the Gradio interface
with gr.Blocks() as interface:
gr.Markdown(
"""
# Question Answering System
Upload a document (text, PDF, or Markdown) and ask questions to get answers based on the context.
**Supported File Types**: `.txt`, `.pdf`, `.md`
""")
with gr.Row():
model_dropdown = gr.Dropdown(
choices=list(models.keys()),
label="Select Model",
value="distilbert-base-uncased-distilled-squad"
)
with gr.Row():
file_input = gr.File(label="Upload Document", file_types=["text", "pdf", "markdown"])
question_input = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
with gr.Row():
answer_output = gr.HTML(label="Highlighted Answer")
score_output = gr.Textbox(label="Confidence Score")
explanation_output = gr.Textbox(label="Score Explanation")
chart_output = gr.Image(label="Score Chart")
pdf_output = gr.File(label="Download PDF Report")
with gr.Row():
submit_button = gr.Button("Submit")
status_output = gr.Markdown(value="")
def on_submit(model_name, file, question):
return answer_question(model_name, file, question, status="Loading model...")
submit_button.click(
on_submit,
inputs=[model_dropdown, file_input, question_input],
outputs=[answer_output, score_output, explanation_output, chart_output, pdf_output, status_output]
)
if __name__ == "__main__":
interface.launch(share=True)
|