tovaru commited on
Commit
f2f3712
1 Parent(s): a43bf4d

initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LICENSE +21 -0
  2. README.md +2 -2
  3. __pycache__/attentions.cpython-37.pyc +0 -0
  4. __pycache__/commons.cpython-37.pyc +0 -0
  5. __pycache__/models.cpython-37.pyc +0 -0
  6. __pycache__/modules.cpython-37.pyc +0 -0
  7. __pycache__/transforms.cpython-37.pyc +0 -0
  8. __pycache__/utils.cpython-37.pyc +0 -0
  9. app.py +193 -0
  10. attentions.py +303 -0
  11. commons.py +161 -0
  12. configs/config-single-speaker.json +54 -0
  13. configs/config.json +55 -0
  14. data_utils.py +394 -0
  15. inference.ipynb +253 -0
  16. losses.py +61 -0
  17. mel_processing.py +112 -0
  18. models.py +534 -0
  19. models/aru/aru.png +0 -0
  20. models/aru/aru.pth +3 -0
  21. models/config.json +948 -0
  22. models/haruka/haruka.png +0 -0
  23. models/haruka/haruka.pth +3 -0
  24. models/hifumi/hifumi.png +0 -0
  25. models/hifumi/hifumi.pth +3 -0
  26. models/kayoko/kayoko.png +0 -0
  27. models/kayoko/kayoko.pth +3 -0
  28. models/koharu/koharu.png +0 -0
  29. models/koharu/koharu.pth +3 -0
  30. models/metadata.json +50 -0
  31. models/mutsuki/mutsuki.png +0 -0
  32. models/mutsuki/mutsuki.pth +3 -0
  33. modules.py +390 -0
  34. monotonic_align/__init__.py +19 -0
  35. monotonic_align/__pycache__/__init__.cpython-37.pyc +0 -0
  36. monotonic_align/__pycache__/__init__.cpython-38.pyc +0 -0
  37. monotonic_align/build/lib.win-amd64-cpython-37/monotonic_align/core.cp37-win_amd64.pyd +0 -0
  38. monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.exp +0 -0
  39. monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.lib +0 -0
  40. monotonic_align/build/temp.win-amd64-3.7/Release/core.obj +0 -0
  41. monotonic_align/build/temp.win-amd64-cpython-37/Release/core.cp37-win_amd64.exp +0 -0
  42. monotonic_align/build/temp.win-amd64-cpython-37/Release/core.cp37-win_amd64.lib +0 -0
  43. monotonic_align/build/temp.win-amd64-cpython-37/Release/core.obj +0 -0
  44. monotonic_align/core.c +0 -0
  45. monotonic_align/core.pyx +42 -0
  46. monotonic_align/monotonic_align/core.cp37-win_amd64.pyd +0 -0
  47. monotonic_align/setup.py +9 -0
  48. preprocess.py +25 -0
  49. requirements.txt +12 -0
  50. run.py +50 -0
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Jaehyeon Kim
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
  title: Vits For Ba
3
- emoji: 💻
4
  colorFrom: blue
5
- colorTo: green
6
  sdk: gradio
7
  sdk_version: 3.35.2
8
  app_file: app.py
 
1
  ---
2
  title: Vits For Ba
3
+ emoji: 😇
4
  colorFrom: blue
5
+ colorTo: white
6
  sdk: gradio
7
  sdk_version: 3.35.2
8
  app_file: app.py
__pycache__/attentions.cpython-37.pyc ADDED
Binary file (9.68 kB). View file
 
__pycache__/commons.cpython-37.pyc ADDED
Binary file (5.82 kB). View file
 
__pycache__/models.cpython-37.pyc ADDED
Binary file (15.4 kB). View file
 
__pycache__/modules.cpython-37.pyc ADDED
Binary file (11.7 kB). View file
 
__pycache__/transforms.cpython-37.pyc ADDED
Binary file (3.87 kB). View file
 
__pycache__/utils.cpython-37.pyc ADDED
Binary file (8.31 kB). View file
 
app.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import json
4
+ import argparse
5
+
6
+ # get arguments
7
+ parser = argparse.ArgumentParser(description="VITS model for Blue Archive characters")
8
+ parser.add_argument('--device', type=str, default='cpu', choices=["cpu","cuda"], help="inference method (default: cpu)")
9
+ parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
10
+ parser.add_argument("--queue", type=int, default=1, help="max number of concurrent workers for the queue (default: 1, set to 0 to disable)")
11
+ parser.add_argument('--api', action="store_true", default=False, help="enable REST routes (allows to skip queue)")
12
+ parser.add_argument("--limit", type=int, default=100, help="prompt words limit (default: 100, set to 0 to disable)")
13
+ args = parser.parse_args()
14
+ #limit_text = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
15
+
16
+ import torch
17
+ import utils
18
+ import commons
19
+ from models import SynthesizerTrn
20
+ from text import text_to_sequence
21
+
22
+ import gradio as gr
23
+
24
+ metadata_path = "./models/metadata.json"
25
+ config_path = "./models/config.json"
26
+ default_sid = 10
27
+
28
+ # load each model's definition
29
+ with open(metadata_path, "r", encoding="utf-8") as f:
30
+ metadata = json.load(f)
31
+
32
+ ##################### MODEL LOADING #####################
33
+ # loads one model and returns a container with all references to the model
34
+ device = torch.device(args.device)
35
+ def load_checkpoint(model_path):
36
+ hps = utils.get_hparams_from_file(config_path)
37
+ net_g = SynthesizerTrn(
38
+ len(hps.symbols),
39
+ hps.data.filter_length // 2 + 1,
40
+ hps.train.segment_size // hps.data.hop_length,
41
+ n_speakers=hps.data.n_speakers,
42
+ **hps.model)
43
+ model = net_g.eval().to(device)
44
+ pythomodel = utils.load_checkpoint(model_path, net_g, None)
45
+
46
+ return {"hps": hps, "net_g": net_g}
47
+
48
+ # loads all models on system memory and returns a dict with all references
49
+ def load_models():
50
+ models = {}
51
+ for name, model_info in metadata.items():
52
+ model = load_checkpoint(model_info["model"])
53
+ models[name] = model
54
+
55
+ return models
56
+
57
+ models = load_models()
58
+
59
+ ##################### INFERENCE #####################
60
+ def get_text(text, hps):
61
+ text_norm = text_to_sequence(text, hps.data.text_cleaners)
62
+ if hps.data.add_blank:
63
+ text_norm = commons.intersperse(text_norm, 0)
64
+ text_norm = torch.LongTensor(text_norm)
65
+ return text_norm
66
+
67
+ def prepare_text(text):
68
+ prepared_text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
69
+ if args.limit > 0:
70
+ text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
71
+ max_len = args.limit
72
+ if text_len > max_len:
73
+ return None
74
+ return prepared_text
75
+
76
+ # inferes a model
77
+ def speak(selected_index, text, noise_scale, noise_scale_w, length_scale, speaker_id):
78
+ # get selected model
79
+ model = list(models.items())[selected_index][1]
80
+ # clean and truncate text
81
+ text = prepare_text(text)
82
+ if text is None:
83
+ return ["Error: text is too long", None]
84
+
85
+ stn_tst = get_text(text, model["hps"])
86
+ with torch.no_grad():
87
+ x_tst = stn_tst.unsqueeze(0).to(device)
88
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
89
+ sid = torch.LongTensor([speaker_id]).to(device)
90
+ audio = model["net_g"].infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
91
+
92
+ return ["Success", (22050, audio)]
93
+
94
+ ##################### GRADIO UI #####################
95
+ # javascript function for creating a download link, reads the audio file from the DOM and returns it with the prompt as the filename
96
+ download_audio_js = """
97
+ () =>{{
98
+ let root = document.querySelector("body > gradio-app");
99
+ if (root.shadowRoot != null)
100
+ root = root.shadowRoot;
101
+ let audio = root.querySelector("#output-audio").querySelector("audio");
102
+ let text = root.querySelector("#input-text").querySelector("textarea");
103
+ if (audio == undefined)
104
+ return;
105
+ text = text.value;
106
+ if (text == undefined)
107
+ text = Math.floor(Math.random()*100000000);
108
+ audio = audio.src;
109
+ let oA = document.createElement("a");
110
+ oA.download = text.substr(0, 20)+'.wav';
111
+ oA.href = audio;
112
+ document.body.appendChild(oA);
113
+ oA.click();
114
+ oA.remove();
115
+ }}
116
+ """
117
+ def make_gradio_ui():
118
+ with gr.Blocks(css="#avatar {width:auto;height:200px;}") as demo:
119
+ # make title
120
+ gr.Markdown(
121
+ """
122
+ # <center> VITS for Blue Archive Characters
123
+ ## <center> This is for educational purposes, please do not generate harmful or inappropriate content\n
124
+ [![HitCount](https://hits.dwyl.com/tovaru/vits-for-ba.svg?style=flat-square&show=unique)](http://hits.dwyl.com/tovaru/vits-for-ba)\n
125
+ This is based on [zomehwh's implementation](https://huggingface.co/spaces/zomehwh/vits-models), please visit their space if you want to finetune your own models!
126
+ """
127
+ )
128
+
129
+ first = list(metadata.items())[0][1]
130
+ with gr.Row():
131
+ # setup column
132
+ with gr.Column():
133
+ # set text input field
134
+ text = gr.Textbox(
135
+ lines=5,
136
+ interactive=True,
137
+ label=f"Text ({args.limit} words limit)" if args.limit > 0 else "Text",
138
+ value=first["example_text"],
139
+ elem_id="input-text")
140
+
141
+ # button for loading example texts
142
+ example_btn = gr.Button("Example", size="sm")
143
+
144
+ # character selector
145
+ names = []
146
+ for _, model in metadata.items():
147
+ names.append(model["name_en"])
148
+ character = gr.Radio(label="Character", choices=names, value=names[0], type="index")
149
+
150
+ # inference parameters
151
+ with gr.Row():
152
+ ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
153
+ nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
154
+ with gr.Row():
155
+ ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1, interactive=True)
156
+ sid = gr.Number(value=default_sid, label="Speaker ID (increase or decrease to change the intonation)")
157
+
158
+ # generate button
159
+ generate_btn = gr.Button(value="Generate", variant="primary")
160
+
161
+ # results column
162
+ with gr.Column():
163
+ avatar = gr.Image(first["avatar"], type="pil", elem_id="avatar")
164
+ output_message = gr.Textbox(label="Result Message")
165
+ output_audio = gr.Audio(label="Output Audio", interactive=False, elem_id="output-audio")
166
+ download_btn = gr.Button("Download Audio")
167
+
168
+ # set character selection updates
169
+ def update_selection(index):
170
+ avatars = list(metadata.items())
171
+ new_avatar = avatars[index][1]["avatar"]
172
+ return gr.Image.update(value=new_avatar)
173
+
174
+ character.change(update_selection, character, avatar)
175
+
176
+ # set generate button action
177
+ generate_btn.click(fn=speak, inputs=[character, text, ns, nsw, ls, sid], outputs=[output_message, output_audio], api_name="generate")
178
+
179
+ # set download butto naction
180
+ download_btn.click(None, [], [], _js=download_audio_js)
181
+
182
+ def load_example(index):
183
+ example = list(metadata.items())[index][1]["example_text"]
184
+ return example
185
+ example_btn.click(fn=load_example, inputs=[character], outputs=[text])
186
+
187
+ return demo
188
+
189
+ if __name__ == "__main__":
190
+ demo = make_gradio_ui()
191
+ if args.queue > 0:
192
+ demo.queue(concurrency_count=args.queue, api_open=args.api)
193
+ demo.launch(share=args.share, show_api=args.api)
attentions.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import commons
9
+ import modules
10
+ from modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15
+ super().__init__()
16
+ self.hidden_channels = hidden_channels
17
+ self.filter_channels = filter_channels
18
+ self.n_heads = n_heads
19
+ self.n_layers = n_layers
20
+ self.kernel_size = kernel_size
21
+ self.p_dropout = p_dropout
22
+ self.window_size = window_size
23
+
24
+ self.drop = nn.Dropout(p_dropout)
25
+ self.attn_layers = nn.ModuleList()
26
+ self.norm_layers_1 = nn.ModuleList()
27
+ self.ffn_layers = nn.ModuleList()
28
+ self.norm_layers_2 = nn.ModuleList()
29
+ for i in range(self.n_layers):
30
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
32
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
34
+
35
+ def forward(self, x, x_mask):
36
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37
+ x = x * x_mask
38
+ for i in range(self.n_layers):
39
+ y = self.attn_layers[i](x, x, attn_mask)
40
+ y = self.drop(y)
41
+ x = self.norm_layers_1[i](x + y)
42
+
43
+ y = self.ffn_layers[i](x, x_mask)
44
+ y = self.drop(y)
45
+ x = self.norm_layers_2[i](x + y)
46
+ x = x * x_mask
47
+ return x
48
+
49
+
50
+ class Decoder(nn.Module):
51
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52
+ super().__init__()
53
+ self.hidden_channels = hidden_channels
54
+ self.filter_channels = filter_channels
55
+ self.n_heads = n_heads
56
+ self.n_layers = n_layers
57
+ self.kernel_size = kernel_size
58
+ self.p_dropout = p_dropout
59
+ self.proximal_bias = proximal_bias
60
+ self.proximal_init = proximal_init
61
+
62
+ self.drop = nn.Dropout(p_dropout)
63
+ self.self_attn_layers = nn.ModuleList()
64
+ self.norm_layers_0 = nn.ModuleList()
65
+ self.encdec_attn_layers = nn.ModuleList()
66
+ self.norm_layers_1 = nn.ModuleList()
67
+ self.ffn_layers = nn.ModuleList()
68
+ self.norm_layers_2 = nn.ModuleList()
69
+ for i in range(self.n_layers):
70
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
72
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
74
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
76
+
77
+ def forward(self, x, x_mask, h, h_mask):
78
+ """
79
+ x: decoder input
80
+ h: encoder output
81
+ """
82
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84
+ x = x * x_mask
85
+ for i in range(self.n_layers):
86
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
87
+ y = self.drop(y)
88
+ x = self.norm_layers_0[i](x + y)
89
+
90
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91
+ y = self.drop(y)
92
+ x = self.norm_layers_1[i](x + y)
93
+
94
+ y = self.ffn_layers[i](x, x_mask)
95
+ y = self.drop(y)
96
+ x = self.norm_layers_2[i](x + y)
97
+ x = x * x_mask
98
+ return x
99
+
100
+
101
+ class MultiHeadAttention(nn.Module):
102
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103
+ super().__init__()
104
+ assert channels % n_heads == 0
105
+
106
+ self.channels = channels
107
+ self.out_channels = out_channels
108
+ self.n_heads = n_heads
109
+ self.p_dropout = p_dropout
110
+ self.window_size = window_size
111
+ self.heads_share = heads_share
112
+ self.block_length = block_length
113
+ self.proximal_bias = proximal_bias
114
+ self.proximal_init = proximal_init
115
+ self.attn = None
116
+
117
+ self.k_channels = channels // n_heads
118
+ self.conv_q = nn.Conv1d(channels, channels, 1)
119
+ self.conv_k = nn.Conv1d(channels, channels, 1)
120
+ self.conv_v = nn.Conv1d(channels, channels, 1)
121
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
122
+ self.drop = nn.Dropout(p_dropout)
123
+
124
+ if window_size is not None:
125
+ n_heads_rel = 1 if heads_share else n_heads
126
+ rel_stddev = self.k_channels**-0.5
127
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129
+
130
+ nn.init.xavier_uniform_(self.conv_q.weight)
131
+ nn.init.xavier_uniform_(self.conv_k.weight)
132
+ nn.init.xavier_uniform_(self.conv_v.weight)
133
+ if proximal_init:
134
+ with torch.no_grad():
135
+ self.conv_k.weight.copy_(self.conv_q.weight)
136
+ self.conv_k.bias.copy_(self.conv_q.bias)
137
+
138
+ def forward(self, x, c, attn_mask=None):
139
+ q = self.conv_q(x)
140
+ k = self.conv_k(c)
141
+ v = self.conv_v(c)
142
+
143
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
144
+
145
+ x = self.conv_o(x)
146
+ return x
147
+
148
+ def attention(self, query, key, value, mask=None):
149
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
150
+ b, d, t_s, t_t = (*key.size(), query.size(2))
151
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154
+
155
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156
+ if self.window_size is not None:
157
+ assert t_s == t_t, "Relative attention is only available for self-attention."
158
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
161
+ scores = scores + scores_local
162
+ if self.proximal_bias:
163
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
164
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165
+ if mask is not None:
166
+ scores = scores.masked_fill(mask == 0, -1e4)
167
+ if self.block_length is not None:
168
+ assert t_s == t_t, "Local attention is only available for self-attention."
169
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170
+ scores = scores.masked_fill(block_mask == 0, -1e4)
171
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172
+ p_attn = self.drop(p_attn)
173
+ output = torch.matmul(p_attn, value)
174
+ if self.window_size is not None:
175
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
176
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179
+ return output, p_attn
180
+
181
+ def _matmul_with_relative_values(self, x, y):
182
+ """
183
+ x: [b, h, l, m]
184
+ y: [h or 1, m, d]
185
+ ret: [b, h, l, d]
186
+ """
187
+ ret = torch.matmul(x, y.unsqueeze(0))
188
+ return ret
189
+
190
+ def _matmul_with_relative_keys(self, x, y):
191
+ """
192
+ x: [b, h, l, d]
193
+ y: [h or 1, m, d]
194
+ ret: [b, h, l, m]
195
+ """
196
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197
+ return ret
198
+
199
+ def _get_relative_embeddings(self, relative_embeddings, length):
200
+ max_relative_position = 2 * self.window_size + 1
201
+ # Pad first before slice to avoid using cond ops.
202
+ pad_length = max(length - (self.window_size + 1), 0)
203
+ slice_start_position = max((self.window_size + 1) - length, 0)
204
+ slice_end_position = slice_start_position + 2 * length - 1
205
+ if pad_length > 0:
206
+ padded_relative_embeddings = F.pad(
207
+ relative_embeddings,
208
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209
+ else:
210
+ padded_relative_embeddings = relative_embeddings
211
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212
+ return used_relative_embeddings
213
+
214
+ def _relative_position_to_absolute_position(self, x):
215
+ """
216
+ x: [b, h, l, 2*l-1]
217
+ ret: [b, h, l, l]
218
+ """
219
+ batch, heads, length, _ = x.size()
220
+ # Concat columns of pad to shift from relative to absolute indexing.
221
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222
+
223
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
224
+ x_flat = x.view([batch, heads, length * 2 * length])
225
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226
+
227
+ # Reshape and slice out the padded elements.
228
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229
+ return x_final
230
+
231
+ def _absolute_position_to_relative_position(self, x):
232
+ """
233
+ x: [b, h, l, l]
234
+ ret: [b, h, l, 2*l-1]
235
+ """
236
+ batch, heads, length, _ = x.size()
237
+ # padd along column
238
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240
+ # add 0's in the beginning that will skew the elements after reshape
241
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243
+ return x_final
244
+
245
+ def _attention_bias_proximal(self, length):
246
+ """Bias for self-attention to encourage attention to close positions.
247
+ Args:
248
+ length: an integer scalar.
249
+ Returns:
250
+ a Tensor with shape [1, 1, length, length]
251
+ """
252
+ r = torch.arange(length, dtype=torch.float32)
253
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
255
+
256
+
257
+ class FFN(nn.Module):
258
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259
+ super().__init__()
260
+ self.in_channels = in_channels
261
+ self.out_channels = out_channels
262
+ self.filter_channels = filter_channels
263
+ self.kernel_size = kernel_size
264
+ self.p_dropout = p_dropout
265
+ self.activation = activation
266
+ self.causal = causal
267
+
268
+ if causal:
269
+ self.padding = self._causal_padding
270
+ else:
271
+ self.padding = self._same_padding
272
+
273
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275
+ self.drop = nn.Dropout(p_dropout)
276
+
277
+ def forward(self, x, x_mask):
278
+ x = self.conv_1(self.padding(x * x_mask))
279
+ if self.activation == "gelu":
280
+ x = x * torch.sigmoid(1.702 * x)
281
+ else:
282
+ x = torch.relu(x)
283
+ x = self.drop(x)
284
+ x = self.conv_2(self.padding(x * x_mask))
285
+ return x * x_mask
286
+
287
+ def _causal_padding(self, x):
288
+ if self.kernel_size == 1:
289
+ return x
290
+ pad_l = self.kernel_size - 1
291
+ pad_r = 0
292
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293
+ x = F.pad(x, commons.convert_pad_shape(padding))
294
+ return x
295
+
296
+ def _same_padding(self, x):
297
+ if self.kernel_size == 1:
298
+ return x
299
+ pad_l = (self.kernel_size - 1) // 2
300
+ pad_r = self.kernel_size // 2
301
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302
+ x = F.pad(x, commons.convert_pad_shape(padding))
303
+ return x
commons.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def intersperse(lst, item):
25
+ result = [item] * (len(lst) * 2 + 1)
26
+ result[1::2] = lst
27
+ return result
28
+
29
+
30
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
31
+ """KL(P||Q)"""
32
+ kl = (logs_q - logs_p) - 0.5
33
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(
68
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
69
+ position = torch.arange(length, dtype=torch.float)
70
+ num_timescales = channels // 2
71
+ log_timescale_increment = (
72
+ math.log(float(max_timescale) / float(min_timescale)) /
73
+ (num_timescales - 1))
74
+ inv_timescales = min_timescale * torch.exp(
75
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ l = pad_shape[::-1]
112
+ pad_shape = [item for sublist in l for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+ device = duration.device
134
+
135
+ b, _, t_y, t_x = mask.shape
136
+ cum_duration = torch.cumsum(duration, -1)
137
+
138
+ cum_duration_flat = cum_duration.view(b * t_x)
139
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140
+ path = path.view(b, t_x, t_y)
141
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142
+ path = path.unsqueeze(1).transpose(2,3) * mask
143
+ return path
144
+
145
+
146
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
147
+ if isinstance(parameters, torch.Tensor):
148
+ parameters = [parameters]
149
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
150
+ norm_type = float(norm_type)
151
+ if clip_value is not None:
152
+ clip_value = float(clip_value)
153
+
154
+ total_norm = 0
155
+ for p in parameters:
156
+ param_norm = p.grad.data.norm(norm_type)
157
+ total_norm += param_norm.item() ** norm_type
158
+ if clip_value is not None:
159
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
160
+ total_norm = total_norm ** (1. / norm_type)
161
+ return total_norm
configs/config-single-speaker.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 2e-5,
8
+ "betas": [0.8, 0.99],
9
+ "eps": 1e-9,
10
+ "batch_size": 16,
11
+ "fp16_run": true,
12
+ "lr_decay": 0.999875,
13
+ "segment_size": 8192,
14
+ "init_lr_ratio": 1,
15
+ "warmup_epochs": 0,
16
+ "c_mel": 45,
17
+ "c_kl": 1.0
18
+ },
19
+ "data": {
20
+ "training_files":"filelists/takina_train.txt.cleaned",
21
+ "validation_files":"filelists/takina_val.txt.cleaned",
22
+ "text_cleaners":["japanese_cleaners"],
23
+ "max_wav_value": 32768.0,
24
+ "sampling_rate": 22050,
25
+ "filter_length": 1024,
26
+ "hop_length": 256,
27
+ "win_length": 1024,
28
+ "n_mel_channels": 80,
29
+ "mel_fmin": 0.0,
30
+ "mel_fmax": null,
31
+ "add_blank": true,
32
+ "n_speakers": 0,
33
+ "cleaned_text": true
34
+ },
35
+ "model": {
36
+ "inter_channels": 192,
37
+ "hidden_channels": 192,
38
+ "filter_channels": 768,
39
+ "n_heads": 2,
40
+ "n_layers": 6,
41
+ "kernel_size": 3,
42
+ "p_dropout": 0.1,
43
+ "resblock": "1",
44
+ "resblock_kernel_sizes": [3,7,11],
45
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46
+ "upsample_rates": [8,8,2,2],
47
+ "upsample_initial_channel": 512,
48
+ "upsample_kernel_sizes": [16,16,4,4],
49
+ "n_layers_q": 3,
50
+ "use_spectral_norm": false
51
+ },
52
+ "speakers": ["takina"],
53
+ "symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
54
+ }
configs/config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 2e-4,
8
+ "betas": [0.8, 0.99],
9
+ "eps": 1e-9,
10
+ "batch_size": 16,
11
+ "fp16_run": true,
12
+ "lr_decay": 0.999875,
13
+ "segment_size": 8192,
14
+ "init_lr_ratio": 1,
15
+ "warmup_epochs": 0,
16
+ "c_mel": 45,
17
+ "c_kl": 1.0
18
+ },
19
+ "data": {
20
+ "training_files":"filelists/miyu_train.txt.cleaned",
21
+ "validation_files":"filelists/miyu_val.txt.cleaned",
22
+ "text_cleaners":["japanese_cleaners"],
23
+ "max_wav_value": 32768.0,
24
+ "sampling_rate": 22050,
25
+ "filter_length": 1024,
26
+ "hop_length": 256,
27
+ "win_length": 1024,
28
+ "n_mel_channels": 80,
29
+ "mel_fmin": 0.0,
30
+ "mel_fmax": null,
31
+ "add_blank": true,
32
+ "n_speakers": 804,
33
+ "cleaned_text": true
34
+ },
35
+ "model": {
36
+ "inter_channels": 192,
37
+ "hidden_channels": 192,
38
+ "filter_channels": 768,
39
+ "n_heads": 2,
40
+ "n_layers": 6,
41
+ "kernel_size": 3,
42
+ "p_dropout": 0.1,
43
+ "resblock": "1",
44
+ "resblock_kernel_sizes": [3,7,11],
45
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46
+ "upsample_rates": [8,8,2,2],
47
+ "upsample_initial_channel": 512,
48
+ "upsample_kernel_sizes": [16,16,4,4],
49
+ "n_layers_q": 3,
50
+ "use_spectral_norm": false,
51
+ "gin_channels": 256
52
+ },
53
+ "speakers": ["\u7279\u522b\u5468", "\u65e0\u58f0\u94c3\u9e7f", "\u4e1c\u6d77\u5e1d\u7687\uff08\u5e1d\u5b9d\uff0c\u5e1d\u738b\uff09", "\u4e38\u5584\u65af\u57fa", "\u5bcc\u58eb\u5947\u8ff9", "\u5c0f\u6817\u5e3d", "\u9ec4\u91d1\u8239", "\u4f0f\u7279\u52a0", "\u5927\u548c\u8d64\u9aa5", "\u5927\u6811\u5feb\u8f66", "\u8349\u4e0a\u98de", "\u83f1\u4e9a\u9a6c\u900a", "\u76ee\u767d\u9ea6\u6606", "\u795e\u9e70", "\u597d\u6b4c\u5267", "\u6210\u7530\u767d\u4ec1", "\u9c81\u9053\u592b\u8c61\u5f81\uff08\u7687\u5e1d\uff09", "\u6c14\u69fd", "\u7231\u4e3d\u6570\u7801", "\u661f\u4e91\u5929\u7a7a", "\u7389\u85fb\u5341\u5b57", "\u7f8e\u5999\u59ff\u52bf", "\u7435\u7436\u6668\u5149", "\u6469\u8036\u91cd\u70ae", "\u66fc\u57ce\u8336\u5ea7", "\u7f8e\u6d66\u6ce2\u65c1", "\u76ee\u767d\u8d56\u6069", "\u83f1\u66d9", "\u96ea\u4e2d\u7f8e\u4eba", "\u7c73\u6d74", "\u827e\u5c3c\u65af\u98ce\u795e", "\u7231\u4e3d\u901f\u5b50\uff08\u7231\u4e3d\u5feb\u5b50\uff09", "\u7231\u6155\u7ec7\u59ec", "\u7a3b\u8377\u4e00", "\u80dc\u5229\u5956\u5238", "\u7a7a\u4e2d\u795e\u5bab", "\u8363\u8fdb\u95ea\u8000", "\u771f\u673a\u4f36", "\u5ddd\u4e0a\u516c\u4e3b", "\u9ec4\u91d1\u57ce\uff08\u9ec4\u91d1\u57ce\u5e02\uff09", "\u6a31\u82b1\u8fdb\u738b", "\u91c7\u73e0", "\u65b0\u5149\u98ce", "\u4e1c\u5546\u53d8\u9769", "\u8d85\u7ea7\u5c0f\u6d77\u6e7e", "\u9192\u76ee\u98de\u9e70\uff08\u5bc4\u5bc4\u5b50\uff09", "\u8352\u6f20\u82f1\u96c4", "\u4e1c\u701b\u4f50\u6566", "\u4e2d\u5c71\u5e86\u5178", "\u6210\u7530\u5927\u8fdb", "\u897f\u91ce\u82b1", "\u6625\u4e3d\uff08\u4e4c\u62c9\u62c9\uff09", "\u9752\u7af9\u56de\u5fc6", "\u5fae\u5149\u98de\u9a79", "\u7f8e\u4e3d\u5468\u65e5", "\u5f85\u517c\u798f\u6765", "mr cb\uff08cb\u5148\u751f\uff09", "\u540d\u5c06\u6012\u6d9b\uff08\u540d\u5c06\u6237\u4ec1\uff09", "\u76ee\u767d\u591a\u4f2f", "\u4f18\u79c0\u7d20\u8d28", "\u5e1d\u738b\u5149\u8f89", "\u5f85\u517c\u8bd7\u6b4c\u5267", "\u751f\u91ce\u72c4\u675c\u65af", "\u76ee\u767d\u5584\u4fe1", "\u5927\u62d3\u592a\u9633\u795e", "\u53cc\u6da1\u8f6e\uff08\u4e24\u7acb\u76f4\uff0c\u4e24\u55b7\u5c04\uff0c\u4e8c\u9505\u5934\uff0c\u9006\u55b7\u5c04\uff09", "\u91cc\u89c1\u5149\u94bb\uff08\u8428\u6258\u8bfa\u91d1\u521a\u77f3\uff09", "\u5317\u90e8\u7384\u9a79", "\u6a31\u82b1\u5343\u4ee3\u738b", "\u5929\u72fc\u661f\u8c61\u5f81", "\u76ee\u767d\u963f\u5c14\u4e39", "\u516b\u91cd\u65e0\u654c", "\u9e64\u4e38\u521a\u5fd7", "\u76ee\u767d\u5149\u660e", "\u6210\u7530\u62dc\u4ec1\uff08\u6210\u7530\u8def\uff09", "\u4e5f\u6587\u6444\u8f89", "\u5c0f\u6797\u5386\u5947", "\u5317\u6e2f\u706b\u5c71", "\u5947\u9510\u9a8f", "\u82e6\u6da9\u7cd6\u971c", "\u5c0f\u5c0f\u8695\u8327", "\u9a8f\u5ddd\u624b\u7eb2\uff08\u7eff\u5e3d\u6076\u9b54\uff09", "\u79cb\u5ddd\u5f25\u751f\uff08\u5c0f\u5c0f\u7406\u4e8b\u957f\uff09", "\u4e59\u540d\u53f2\u60a6\u5b50\uff08\u4e59\u540d\u8bb0\u8005\uff09", "\u6850\u751f\u9662\u8475", "\u5b89\u5fc3\u6cfd\u523a\u523a\u7f8e", "\u6a2b\u672c\u7406\u5b50", "\u795e\u91cc\u7eeb\u534e\uff08\u9f9f\u9f9f\uff09", "\u7434", "\u7a7a\uff08\u7a7a\u54e5\uff09", "\u4e3d\u838e", "\u8367\uff08\u8367\u59b9\uff09", "\u82ad\u82ad\u62c9", "\u51ef\u4e9a", "\u8fea\u5362\u514b", "\u96f7\u6cfd", "\u5b89\u67cf", "\u6e29\u8fea", "\u9999\u83f1", "\u5317\u6597", "\u884c\u79cb", "\u9b48", "\u51dd\u5149", "\u53ef\u8389", "\u949f\u79bb", "\u83f2\u8c22\u5c14\uff08\u7687\u5973\uff09", "\u73ed\u5c3c\u7279", "\u8fbe\u8fbe\u5229\u4e9a\uff08\u516c\u5b50\uff09", "\u8bfa\u827e\u5c14\uff08\u5973\u4ec6\uff09", "\u4e03\u4e03", "\u91cd\u4e91", "\u7518\u96e8\uff08\u6930\u7f8a\uff09", "\u963f\u8d1d\u591a", "\u8fea\u5965\u5a1c\uff08\u732b\u732b\uff09", "\u83ab\u5a1c", "\u523b\u6674", "\u7802\u7cd6", "\u8f9b\u7131", "\u7f57\u838e\u8389\u4e9a", "\u80e1\u6843", "\u67ab\u539f\u4e07\u53f6\uff08\u4e07\u53f6\uff09", "\u70df\u7eef", "\u5bb5\u5bab", "\u6258\u9a6c", "\u4f18\u83c8", "\u96f7\u7535\u5c06\u519b\uff08\u96f7\u795e\uff09", "\u65e9\u67da", "\u73ca\u745a\u5bab\u5fc3\u6d77\uff08\u5fc3\u6d77\uff0c\u6263\u6263\u7c73\uff09", "\u4e94\u90ce", "\u4e5d\u6761\u88df\u7f57", "\u8352\u6cf7\u4e00\u6597\uff08\u4e00\u6597\uff09", "\u57c3\u6d1b\u4f0a", "\u7533\u9e64", "\u516b\u91cd\u795e\u5b50\uff08\u795e\u5b50\uff09", "\u795e\u91cc\u7eeb\u4eba\uff08\u7eeb\u4eba\uff09", "\u591c\u5170", "\u4e45\u5c90\u5fcd", "\u9e7f\u91ce\u82d1\u5e73\u85cf", "\u63d0\u7eb3\u91cc", "\u67ef\u83b1", "\u591a\u8389", "\u4e91\u5807", "\u7eb3\u897f\u59b2\uff08\u8349\u795e\uff09", "\u6df1\u6e0a\u4f7f\u5f92", "\u59ae\u9732", "\u8d5b\u8bfa", "\u503a\u52a1\u5904\u7406\u4eba", "\u574e\u8482\u4e1d", "\u771f\u5f13\u5feb\u8f66", "\u79cb\u4eba", "\u671b\u65cf", "\u827e\u5c14\u83f2", "\u827e\u8389\u4e1d", "\u827e\u4f26", "\u963f\u6d1b\u74e6", "\u5929\u91ce", "\u5929\u76ee\u5341\u4e94", "\u611a\u4eba\u4f17-\u5b89\u5fb7\u70c8", "\u5b89\u987a", "\u5b89\u897f", "\u8475", "\u9752\u6728", "\u8352\u5ddd\u5e78\u6b21", "\u8352\u8c37", "\u6709\u6cfd", "\u6d45\u5ddd", "\u9ebb\u7f8e", "\u51dd\u5149\u52a9\u624b", "\u963f\u6258", "\u7afa\u5b50", "\u767e\u8bc6", "\u767e\u95fb", "\u767e\u6653", "\u767d\u672f", "\u8d1d\u96c5\u7279\u4e3d\u5947", "\u4e3d\u5854", "\u5931\u843d\u8ff7\u8fed", "\u7f2d\u4e71\u661f\u68d8", "\u4f0a\u7538", "\u4f0f\u7279\u52a0\u5973\u5b69", "\u72c2\u70ed\u84dd\u8c03", "\u8389\u8389\u5a05", "\u841d\u838e\u8389\u5a05", "\u516b\u91cd\u6a31", "\u516b\u91cd\u971e", "\u5361\u83b2", "\u7b2c\u516d\u591c\u60f3\u66f2", "\u5361\u841d\u5c14", "\u59ec\u5b50", "\u6781\u5730\u6218\u5203", "\u5e03\u6d1b\u59ae\u5a05", "\u6b21\u751f\u94f6\u7ffc", "\u7406\u4e4b\u5f8b\u8005%26\u5e0c\u513f", "\u7406\u4e4b\u5f8b\u8005", "\u8ff7\u57ce\u9a87\u5154", "\u5e0c\u513f", "\u9b47\u591c\u661f\u6e0a", "\u9ed1\u5e0c\u513f", "\u5e15\u6735\u83f2\u8389\u4e1d", "\u4e0d\u706d\u661f\u951a", "\u5929\u5143\u9a91\u82f1", "\u5e7d\u5170\u9edb\u5c14", "\u6d3e\u8499bh3", "\u7231\u9171", "\u7eef\u7389\u4e38", "\u5fb7\u4e3d\u838e", "\u6708\u4e0b\u521d\u62e5", "\u6714\u591c\u89c2\u661f", "\u66ae\u5149\u9a91\u58eb", "\u683c\u857e\u4fee", "\u7559\u4e91\u501f\u98ce\u771f\u541b", "\u6885\u6bd4\u4e4c\u65af", "\u4eff\u72b9\u5927", "\u514b\u83b1\u56e0", "\u5723\u5251\u5e7d\u5170\u9edb\u5c14", "\u5996\u7cbe\u7231\u8389", "\u7279\u65af\u62c9zero", "\u82cd\u7384", "\u82e5\u6c34", "\u897f\u7433", "\u6234\u56e0\u65af\u96f7\u5e03", "\u8d1d\u62c9", "\u8d64\u9e22", "\u9547\u9b42\u6b4c", "\u6e21\u9e26", "\u4eba\u4e4b\u5f8b\u8005", "\u7231\u8389\u5e0c\u96c5", "\u5929\u7a79\u6e38\u4fa0", "\u742a\u4e9a\u5a1c", "\u7a7a\u4e4b\u5f8b\u8005", "\u85aa\u708e\u4e4b\u5f8b\u8005", "\u4e91\u58a8\u4e39\u5fc3", "\u7b26\u534e", "\u8bc6\u4e4b\u5f8b\u8005", "\u7279\u74e6\u6797", "\u7ef4\u5c14\u8587", "\u82bd\u8863", "\u96f7\u4e4b\u5f8b\u8005", "\u65ad\u7f6a\u5f71\u821e", "\u963f\u6ce2\u5c3c\u4e9a", "\u698e\u672c", "\u5384\u5c3c\u65af\u7279", "\u6076\u9f99", "\u8303\u4e8c\u7237", "\u6cd5\u62c9", "\u611a\u4eba\u4f17\u58eb\u5175", "\u611a\u4eba\u4f17\u58eb\u5175a", "\u611a\u4eba\u4f17\u58eb\u5175b", "\u611a\u4eba\u4f17\u58eb\u5175c", "\u611a\u4eba\u4f17a", "\u611a\u4eba\u4f17b", "\u98de\u98de", "\u83f2\u5229\u514b\u65af", "\u5973\u6027\u8ddf\u968f\u8005", "\u9022\u5ca9", "\u6446\u6e21\u4eba", "\u72c2\u8e81\u7684\u7537\u4eba", "\u5965\u5179", "\u8299\u841d\u62c9", "\u8ddf\u968f\u8005", "\u871c\u6c41\u751f\u7269", "\u9ec4\u9ebb\u5b50", "\u6e0a\u4e0a", "\u85e4\u6728", "\u6df1\u89c1", "\u798f\u672c", "\u8299\u84c9", "\u53e4\u6cfd", "\u53e4\u7530", "\u53e4\u5c71", "\u53e4\u8c37\u6607", "\u5085\u4e09\u513f", "\u9ad8\u8001\u516d", "\u77ff\u5de5\u5192", "\u5143\u592a", "\u5fb7\u5b89\u516c", "\u8302\u624d\u516c", "\u6770\u62c9\u5fb7", "\u845b\u7f57\u4e3d", "\u91d1\u5ffd\u5f8b", "\u516c\u4fca", "\u9505\u5df4", "\u6b4c\u5fb7", "\u963f\u8c6a", "\u72d7\u4e09\u513f", "\u845b\u745e\u4e1d", "\u82e5\u5fc3", "\u963f\u5c71\u5a46", "\u602a\u9e1f", "\u5e7f\u7af9", "\u89c2\u6d77", "\u5173\u5b8f", "\u871c\u6c41\u536b\u5175", "\u5b88\u536b1", "\u50b2\u6162\u7684\u5b88\u536b", "\u5bb3\u6015\u7684\u5b88\u536b", "\u8d35\u5b89", "\u76d6\u4f0a", "\u963f\u521b", "\u54c8\u592b\u4e39", "\u65e5\u8bed\u963f\u8d1d\u591a\uff08\u91ce\u5c9b\u5065\u513f\uff09", "\u65e5\u8bed\u57c3\u6d1b\u4f0a\uff08\u9ad8\u57a3\u5f69\u9633\uff09", "\u65e5\u8bed\u5b89\u67cf\uff08\u77f3\u89c1\u821e\u83dc\u9999\uff09", "\u65e5\u8bed\u795e\u91cc\u7eeb\u534e\uff08\u65e9\u89c1\u6c99\u7ec7\uff09", "\u65e5\u8bed\u795e\u91cc\u7eeb\u4eba\uff08\u77f3\u7530\u5f70\uff09", "\u65e5\u8bed\u767d\u672f\uff08\u6e38\u4f50\u6d69\u4e8c\uff09", "\u65e5\u8bed\u82ad\u82ad\u62c9\uff08\u9b3c\u5934\u660e\u91cc\uff09", "\u65e5\u8bed\u5317\u6597\uff08\u5c0f\u6e05\u6c34\u4e9a\u7f8e\uff09", "\u65e5\u8bed\u73ed\u5c3c\u7279\uff08\u9022\u5742\u826f\u592a\uff09", "\u65e5\u8bed\u574e\u8482\u4e1d\uff08\u67da\u6728\u51c9\u9999\uff09", "\u65e5\u8bed\u91cd\u4e91\uff08\u9f50\u85e4\u58ee\u9a6c\uff09", "\u65e5\u8bed\u67ef\u83b1\uff08\u524d\u5ddd\u51c9\u5b50\uff09", "\u65e5\u8bed\u8d5b\u8bfa\uff08\u5165\u91ce\u81ea\u7531\uff09", "\u65e5\u8bed\u6234\u56e0\u65af\u96f7\u5e03\uff08\u6d25\u7530\u5065\u6b21\u90ce\uff09", "\u65e5\u8bed\u8fea\u5362\u514b\uff08\u5c0f\u91ce\u8d24\u7ae0\uff09", "\u65e5\u8bed\u8fea\u5965\u5a1c\uff08\u4e95\u6cfd\u8bd7\u7ec7\uff09", "\u65e5\u8bed\u591a\u8389\uff08\u91d1\u7530\u670b\u5b50\uff09", "\u65e5\u8bed\u4f18\u83c8\uff08\u4f50\u85e4\u5229\u5948\uff09", "\u65e5\u8bed\u83f2\u8c22\u5c14\uff08\u5185\u7530\u771f\u793c\uff09", "\u65e5\u8bed\u7518\u96e8\uff08\u4e0a\u7530\u4e3d\u5948\uff09", "\u65e5\u8bed\uff08\u7560\u4e2d\u7950\uff09", "\u65e5\u8bed\u9e7f\u91ce\u9662\u5e73\u85cf\uff08\u4e95\u53e3\u7950\u4e00\uff09", "\u65e5\u8bed\u7a7a\uff08\u5800\u6c5f\u77ac\uff09", "\u65e5\u8bed\u8367\uff08\u60a0\u6728\u78a7\uff09", "\u65e5\u8bed\u80e1\u6843\uff08\u9ad8\u6865\u674e\u4f9d\uff09", "\u65e5\u8bed\u4e00\u6597\uff08\u897f\u5ddd\u8d35\u6559\uff09", "\u65e5\u8bed\u51ef\u4e9a\uff08\u9e1f\u6d77\u6d69\u8f85\uff09", "\u65e5\u8bed\u4e07\u53f6\uff08\u5c9b\u5d0e\u4fe1\u957f\uff09", "\u65e5\u8bed\u523b\u6674\uff08\u559c\u591a\u6751\u82f1\u68a8\uff09", "\u65e5\u8bed\u53ef\u8389\uff08\u4e45\u91ce\u7f8e\u54b2\uff09", "\u65e5\u8bed\u5fc3\u6d77\uff08\u4e09\u68ee\u94c3\u5b50\uff09", "\u65e5\u8bed\u4e5d\u6761\u88df\u7f57\uff08\u6fd1\u6237\u9ebb\u6c99\u7f8e\uff09", "\u65e5\u8bed\u4e3d\u838e\uff08\u7530\u4e2d\u7406\u60e0\uff09", "\u65e5\u8bed\u83ab\u5a1c\uff08\u5c0f\u539f\u597d\u7f8e\uff09", "\u65e5\u8bed\u7eb3\u897f\u59b2\uff08\u7530\u6751\u7531\u52a0\u8389\uff09", "\u65e5\u8bed\u59ae\u9732\uff08\u91d1\u5143\u5bff\u5b50\uff09", "\u65e5\u8bed\u51dd\u5149\uff08\u5927\u539f\u6c99\u8036\u9999\uff09", "\u65e5\u8bed\u8bfa\u827e\u5c14\uff08\u9ad8\u5c3e\u594f\u97f3\uff09", "\u65e5\u8bed\u5965\u5179\uff08\u589e\u8c37\u5eb7\u7eaa\uff09", "\u65e5\u8bed\u6d3e\u8499\uff08\u53e4\u8d3a\u8475\uff09", "\u65e5\u8bed\u7434\uff08\u658b\u85e4\u5343\u548c\uff09", "\u65e5\u8bed\u4e03\u4e03\uff08\u7530\u6751\u7531\u52a0\u8389\uff09", "\u65e5\u8bed\u96f7\u7535\u5c06\u519b\uff08\u6cfd\u57ce\u7f8e\u96ea\uff09", "\u65e5\u8bed\u96f7\u6cfd\uff08\u5185\u5c71\u6602\u8f89\uff09", "\u65e5\u8bed\u7f57\u838e\u8389\u4e9a\uff08\u52a0\u9688\u4e9a\u8863\uff09", "\u65e5\u8bed\u65e9\u67da\uff08\u6d32\u5d0e\u7eeb\uff09", "\u65e5\u8bed\u6563\u5175\uff08\u67ff\u539f\u5f7b\u4e5f\uff09", "\u65e5\u8bed\u7533\u9e64\uff08\u5ddd\u6f84\u7eeb\u5b50\uff09", "\u65e5\u8bed\u4e45\u5c90\u5fcd\uff08\u6c34\u6865\u9999\u7ec7\uff09", "\u65e5\u8bed\u5973\u58eb\uff08\u5e84\u5b50\u88d5\u8863\uff09", "\u65e5\u8bed\u7802\u7cd6\uff08\u85e4\u7530\u831c\uff09", "\u65e5\u8bed\u8fbe\u8fbe\u5229\u4e9a\uff08\u6728\u6751\u826f\u5e73\uff09", "\u65e5\u8bed\u6258\u9a6c\uff08\u68ee\u7530\u6210\u4e00\uff09", "\u65e5\u8bed\u63d0\u7eb3\u91cc\uff08\u5c0f\u6797\u6c99\u82d7\uff09", "\u65e5\u8bed\u6e29\u8fea\uff08\u6751\u6fd1\u6b65\uff09", "\u65e5\u8bed\u9999\u83f1\uff08\u5c0f\u6cfd\u4e9a\u674e\uff09", "\u65e5\u8bed\u9b48\uff08\u677e\u5188\u796f\u4e1e\uff09", "\u65e5\u8bed\u884c\u79cb\uff08\u7686\u5ddd\u7eaf\u5b50\uff09", "\u65e5\u8bed\u8f9b\u7131\uff08\u9ad8\u6865\u667a\u79cb\uff09", "\u65e5\u8bed\u516b\u91cd\u795e\u5b50\uff08\u4f50\u4ed3\u7eeb\u97f3\uff09", "\u65e5\u8bed\u70df\u7eef\uff08\u82b1\u5b88\u7531\u7f8e\u91cc\uff09", "\u65e5\u8bed\u591c\u5170\uff08\u8fdc\u85e4\u7eeb\uff09", "\u65e5\u8bed\u5bb5\u5bab\uff08\u690d\u7530\u4f73\u5948\uff09", "\u65e5\u8bed\u4e91\u5807\uff08\u5c0f\u5ca9\u4e95\u5c0f\u9e1f\uff09", "\u65e5\u8bed\u949f\u79bb\uff08\u524d\u91ce\u667a\u662d\uff09", "\u6770\u514b", "\u963f\u5409", "\u6c5f\u821f", "\u9274\u79cb", "\u5609\u4e49", "\u7eaa\u82b3", "\u666f\u6f84", "\u7ecf\u7eb6", "\u666f\u660e", "\u664b\u4f18", "\u963f\u9e20", "\u9152\u5ba2", "\u4e54\u5c14", "\u4e54\u745f\u592b", "\u7ea6\u987f", "\u4e54\u4f0a\u65af", "\u5c45\u5b89", "\u541b\u541b", "\u987a\u5409", "\u7eaf\u4e5f", "\u91cd\u4f50", "\u5927\u5c9b\u7eaf\u5e73", "\u84b2\u6cfd", "\u52d8\u89e3\u7531\u5c0f\u8def\u5065\u4e09\u90ce", "\u67ab", "\u67ab\u539f\u4e49\u5e86", "\u836b\u5c71", "\u7532\u6590\u7530\u9f8d\u99ac", "\u6d77\u6597", "\u60df\u795e\u6674\u4e4b\u4ecb", "\u9e7f\u91ce\u5948\u5948", "\u5361\u7435\u8389\u4e9a", "\u51ef\u745f\u7433", "\u52a0\u85e4\u4fe1\u609f", "\u52a0\u85e4\u6d0b\u5e73", "\u80dc\u5bb6", "\u8305\u847a\u4e00\u5e86", "\u548c\u662d", "\u4e00\u6b63", "\u4e00\u9053", "\u6842\u4e00", "\u5e86\u6b21\u90ce", "\u963f\u8d24", "\u5065\u53f8", "\u5065\u6b21\u90ce", "\u5065\u4e09\u90ce", "\u5929\u7406", "\u6740\u624ba", "\u6740\u624bb", "\u6728\u5357\u674f\u5948", "\u6728\u6751", "\u56fd\u738b", "\u6728\u4e0b", "\u5317\u6751", "\u6e05\u60e0", "\u6e05\u4eba", "\u514b\u5217\u95e8\u7279", "\u9a91\u58eb", "\u5c0f\u6797", "\u5c0f\u6625", "\u5eb7\u62c9\u5fb7", "\u5927\u8089\u4e38", "\u7434\u7f8e", "\u5b8f\u4e00", "\u5eb7\u4ecb", "\u5e78\u5fb7", "\u9ad8\u5584", "\u68a2", "\u514b\u7f57\u7d22", "\u4e45\u4fdd", "\u4e5d\u6761\u9570\u6cbb", "\u4e45\u6728\u7530", "\u6606\u94a7", "\u83ca\u5730\u541b", "\u4e45\u5229\u987b", "\u9ed1\u7530", "\u9ed1\u6cfd\u4eac\u4e4b\u4ecb", "\u54cd\u592a", "\u5c9a\u59d0", "\u5170\u6eaa", "\u6f9c\u9633", "\u52b3\u4f26\u65af", "\u4e50\u660e", "\u83b1\u8bfa", "\u83b2", "\u826f\u5b50", "\u674e\u5f53", "\u674e\u4e01", "\u5c0f\u4e50", "\u7075", "\u5c0f\u73b2", "\u7433\u7405a", "\u7433\u7405b", "\u5c0f\u5f6c", "\u5c0f\u5fb7", "\u5c0f\u697d", "\u5c0f\u9f99", "\u5c0f\u5434", "\u5c0f\u5434\u7684\u8bb0\u5fc6", "\u7406\u6b63", "\u963f\u9f99", "\u5362\u5361", "\u6d1b\u6210", "\u7f57\u5de7", "\u5317\u98ce\u72fc", "\u5362\u6b63", "\u840d\u59e5\u59e5", "\u524d\u7530", "\u771f\u663c", "\u9ebb\u7eaa", "\u771f", "\u611a\u4eba\u4f17-\u9a6c\u514b\u897f\u59c6", "\u5973\u6027a", "\u5973\u6027b", "\u5973\u6027a\u7684\u8ddf\u968f\u8005", "\u963f\u5b88", "\u739b\u683c\u4e3d\u7279", "\u771f\u7406", "\u739b\u4e54\u4e3d", "\u739b\u6587", "\u6b63\u80dc", "\u660c\u4fe1", "\u5c06\u53f8", "\u6b63\u4eba", "\u8def\u7237", "\u8001\u7ae0", "\u677e\u7530", "\u677e\u672c", "\u677e\u6d66", "\u677e\u5742", "\u8001\u5b5f", "\u5b5f\u4e39", "\u5546\u4eba\u968f\u4ece", "\u4f20\u4ee4\u5175", "\u7c73\u6b47\u5c14", "\u5fa1\u8206\u6e90\u4e00\u90ce", "\u5fa1\u8206\u6e90\u6b21\u90ce", "\u5343\u5ca9\u519b\u6559\u5934", "\u5343\u5ca9\u519b\u58eb\u5175", "\u660e\u535a", "\u660e\u4fca", "\u7f8e\u94c3", "\u7f8e\u548c", "\u963f\u5e78", "\u524a\u6708\u7b51\u9633\u771f\u541b", "\u94b1\u773c\u513f", "\u68ee\u5f66", "\u5143\u52a9", "\u7406\u6c34\u53e0\u5c71\u771f\u541b", "\u7406\u6c34\u758a\u5c71\u771f\u541b", "\u6731\u8001\u677f", "\u6728\u6728", "\u6751\u4e0a", "\u6751\u7530", "\u6c38\u91ce", "\u957f\u91ce\u539f\u9f99\u4e4b\u4ecb", "\u957f\u6fd1", "\u4e2d\u91ce\u5fd7\u4e43", "\u83dc\u83dc\u5b50", "\u6960\u6960", "\u6210\u6fd1", "\u963f\u5185", "\u5b81\u7984", "\u725b\u5fd7", "\u4fe1\u535a", "\u4f38\u592b", "\u91ce\u65b9", "\u8bfa\u62c9", "\u7eaa\u9999", "\u8bfa\u66fc", "\u4fee\u5973", "\u7eaf\u6c34\u7cbe\u7075", "\u5c0f\u5ddd", "\u5c0f\u4ed3\u6faa", "\u5188\u6797", "\u5188\u5d0e\u7ed8\u91cc\u9999", "\u5188\u5d0e\u9646\u6597", "\u5965\u62c9\u592b", "\u8001\u79d1", "\u9b3c\u5a46\u5a46", "\u5c0f\u91ce\u5bfa", "\u5927\u6cb3\u539f\u4e94\u53f3\u536b\u95e8", "\u5927\u4e45\u4fdd\u5927\u4ecb", "\u5927\u68ee", "\u5927\u52a9", "\u5965\u7279", "\u6d3e\u8499", "\u6d3e\u84992", "\u75c5\u4ebaa", "\u75c5\u4ebab", "\u5df4\u987f", "\u6d3e\u6069", "\u670b\u4e49", "\u56f4\u89c2\u7fa4\u4f17", "\u56f4\u89c2\u7fa4\u4f17a", "\u56f4\u89c2\u7fa4\u4f17b", "\u56f4\u89c2\u7fa4\u4f17c", "\u56f4\u89c2\u7fa4\u4f17d", "\u56f4\u89c2\u7fa4\u4f17e", "\u94dc\u96c0", "\u963f\u80a5", "\u5174\u53d4", "\u8001\u5468\u53d4", "\u516c\u4e3b", "\u5f7c\u5f97", "\u4e7e\u5b50", "\u828a\u828a", "\u4e7e\u73ae", "\u7eee\u547d", "\u675e\u5e73", "\u79cb\u6708", "\u6606\u6069", "\u96f7\u7535\u5f71", "\u5170\u9053\u5c14", "\u96f7\u8499\u5fb7", "\u5192\u5931\u7684\u5e15\u62c9\u5fb7", "\u4f36\u4e00", "\u73b2\u82b1", "\u963f\u4ec1", "\u5bb6\u81e3\u4eec", "\u68a8\u7ed8", "\u8363\u6c5f", "\u620e\u4e16", "\u6d6a\u4eba", "\u7f57\u4f0a\u65af", "\u5982\u610f", "\u51c9\u5b50", "\u5f69\u9999", "\u9152\u4e95", "\u5742\u672c", "\u6714\u6b21\u90ce", "\u6b66\u58eba", "\u6b66\u58ebb", "\u6b66\u58ebc", "\u6b66\u58ebd", "\u73ca\u745a", "\u4e09\u7530", "\u838e\u62c9", "\u7b39\u91ce", "\u806a\u7f8e", "\u806a", "\u5c0f\u767e\u5408", "\u6563\u5175", "\u5bb3\u6015\u7684\u5c0f\u5218", "\u8212\u4f2f\u7279", "\u8212\u8328", "\u6d77\u9f99", "\u4e16\u5b50", "\u8c22\u5c14\u76d6", "\u5bb6\u4e01", "\u5546\u534e", "\u6c99\u5bc5", "\u963f\u5347", "\u67f4\u7530", "\u963f\u8302", "\u5f0f\u5927\u5c06", "\u6e05\u6c34", "\u5fd7\u6751\u52d8\u5175\u536b", "\u65b0\u4e4b\u4e1e", "\u5fd7\u7ec7", "\u77f3\u5934", "\u8bd7\u7fbd", "\u8bd7\u7b60", "\u77f3\u58ee", "\u7fd4\u592a", "\u6b63\u4e8c", "\u5468\u5e73", "\u8212\u6768", "\u9f50\u683c\u8299\u4e3d\u96c5", "\u5973\u58eb", "\u601d\u52e4", "\u516d\u6307\u4e54\u745f", "\u611a\u4eba\u4f17\u5c0f\u5175d", "\u611a\u4eba\u4f17\u5c0f\u5175a", "\u611a\u4eba\u4f17\u5c0f\u5175b", "\u611a\u4eba\u4f17\u5c0f\u5175c", "\u5434\u8001\u4e94", "\u5434\u8001\u4e8c", "\u6ed1\u5934\u9b3c", "\u8a00\u7b11", "\u5434\u8001\u4e03", "\u58eb\u5175h", "\u58eb\u5175i", "\u58eb\u5175a", "\u58eb\u5175b", "\u58eb\u5175c", "\u58eb\u5175d", "\u58eb\u5175e", "\u58eb\u5175f", "\u58eb\u5175g", "\u594f\u592a", "\u65af\u5766\u5229", "\u6387\u661f\u652b\u8fb0\u5929\u541b", "\u5c0f\u5934", "\u5927\u6b66", "\u9676\u4e49\u9686", "\u6749\u672c", "\u82cf\u897f", "\u5acc\u7591\u4ebaa", "\u5acc\u7591\u4ebab", "\u5acc\u7591\u4ebac", "\u5acc\u7591\u4ebad", "\u65af\u4e07", "\u5251\u5ba2a", "\u5251\u5ba2b", "\u963f\u4e8c", "\u5fe0\u80dc", "\u5fe0\u592b", "\u963f\u656c", "\u5b5d\u5229", "\u9e70\u53f8\u8fdb", "\u9ad8\u5c71", "\u4e5d\u6761\u5b5d\u884c", "\u6bc5", "\u7af9\u5185", "\u62d3\u771f", "\u5353\u4e5f", "\u592a\u90ce\u4e38", "\u6cf0\u52d2", "\u624b\u5c9b", "\u54f2\u5e73", "\u54f2\u592b", "\u6258\u514b", "\u5927boss", "\u963f\u5f3a", "\u6258\u5c14\u5fb7\u62c9", "\u65c1\u89c2\u8005", "\u5929\u6210", "\u963f\u5927", "\u8482\u739b\u4e4c\u65af", "\u63d0\u7c73", "\u6237\u7530", "\u963f\u4e09", "\u4e00\u8d77\u7684\u4eba", "\u5fb7\u7530", "\u5fb7\u957f", "\u667a\u6811", "\u5229\u5f66", "\u80d6\u4e4e\u4e4e\u7684\u65c5\u884c\u8005", "\u85cf\u5b9d\u4ebaa", "\u85cf\u5b9d\u4ebab", "\u85cf\u5b9d\u4ebac", "\u85cf\u5b9d\u4ebad", "\u963f\u7947", "\u6052\u96c4", "\u9732\u5b50", "\u8bdd\u5267\u56e2\u56e2\u957f", "\u5185\u6751", "\u4e0a\u91ce", "\u4e0a\u6749", "\u8001\u6234", "\u8001\u9ad8", "\u8001\u8d3e", "\u8001\u58a8", "\u8001\u5b59", "\u5929\u67a2\u661f", "\u8001\u4e91", "\u6709\u4e50\u658b", "\u4e11\u96c4", "\u4e4c\u7ef4", "\u74e6\u4eac", "\u83f2\u5c14\u6208\u9edb\u7279", "\u7ef4\u591a\u5229\u4e9a", "\u8587\u5c14", "\u74e6\u683c\u7eb3", "\u963f\u5916", "\u4f8d\u5973", "\u74e6\u62c9", "\u671b\u96c5", "\u5b9b\u70df", "\u742c\u7389", "\u6218\u58eba", "\u6218\u58ebb", "\u6e21\u8fba", "\u6e21\u90e8", "\u963f\u4f1f", "\u6587\u749f", "\u6587\u6e0a", "\u97e6\u5c14\u7eb3", "\u738b\u6273\u624b", "\u6b66\u6c9b", "\u6653\u98de", "\u8f9b\u7a0b", "\u661f\u706b", "\u661f\u7a00", "\u8f9b\u79c0", "\u79c0\u534e", "\u963f\u65ed", "\u5f90\u5218\u5e08", "\u77e2\u90e8", "\u516b\u6728", "\u5c71\u4e0a", "\u963f\u9633", "\u989c\u7b11", "\u5eb7\u660e", "\u6cf0\u4e45", "\u5b89\u6b66", "\u77e2\u7530\u5e78\u559c", "\u77e2\u7530\u8f9b\u559c", "\u4e49\u575a", "\u83ba\u513f", "\u76c8\u4e30", "\u5b9c\u5e74", "\u94f6\u674f", "\u9038\u8f69", "\u6a2a\u5c71", "\u6c38\u8d35", "\u6c38\u4e1a", "\u5609\u4e45", "\u5409\u5ddd", "\u4e49\u9ad8", "\u7528\u9ad8", "\u9633\u592a", "\u5143\u84c9", "\u73a5\u8f89", "\u6bd3\u534e", "\u6709\u9999", "\u5e78\u4e5f", "\u7531\u771f", "\u7ed3\u83dc", "\u97f5\u5b81", "\u767e\u5408", "\u767e\u5408\u534e", "\u5c24\u82cf\u6ce2\u592b", "\u88d5\u5b50", "\u60a0\u7b56", "\u60a0\u4e5f", "\u4e8e\u5ae3", "\u67da\u5b50", "\u8001\u90d1", "\u6b63\u8302", "\u5fd7\u6210", "\u82b7\u5de7", "\u77e5\u6613", "\u652f\u652f", "\u5468\u826f", "\u73e0\u51fd", "\u795d\u660e", "\u795d\u6d9b"],
54
+ "symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
55
+ }
data_utils.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+
8
+ import commons
9
+ from mel_processing import spectrogram_torch
10
+ from utils import load_wav_to_torch, load_filepaths_and_text
11
+ from text import text_to_sequence, cleaned_text_to_sequence
12
+
13
+
14
+ class TextAudioLoader(torch.utils.data.Dataset):
15
+ """
16
+ 1) loads audio, text pairs
17
+ 2) normalizes text and converts them to sequences of integers
18
+ 3) computes spectrograms from audio files.
19
+ """
20
+ def __init__(self, audiopaths_and_text, hparams):
21
+ self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
22
+ self.text_cleaners = hparams.text_cleaners
23
+ self.max_wav_value = hparams.max_wav_value
24
+ self.sampling_rate = hparams.sampling_rate
25
+ self.filter_length = hparams.filter_length
26
+ self.hop_length = hparams.hop_length
27
+ self.win_length = hparams.win_length
28
+ self.sampling_rate = hparams.sampling_rate
29
+
30
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
31
+
32
+ self.add_blank = hparams.add_blank
33
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
34
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
35
+
36
+ random.seed(1234)
37
+ random.shuffle(self.audiopaths_and_text)
38
+ self._filter()
39
+
40
+
41
+ def _filter(self):
42
+ """
43
+ Filter text & store spec lengths
44
+ """
45
+ # Store spectrogram lengths for Bucketing
46
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
47
+ # spec_length = wav_length // hop_length
48
+
49
+ audiopaths_and_text_new = []
50
+ lengths = []
51
+ for audiopath, text in self.audiopaths_and_text:
52
+ if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
53
+ audiopaths_and_text_new.append([audiopath, text])
54
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
55
+ self.audiopaths_and_text = audiopaths_and_text_new
56
+ self.lengths = lengths
57
+
58
+ def get_audio_text_pair(self, audiopath_and_text):
59
+ # separate filename and text
60
+ audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
61
+ text = self.get_text(text)
62
+ spec, wav = self.get_audio(audiopath)
63
+ return (text, spec, wav)
64
+
65
+ def get_audio(self, filename):
66
+ audio, sampling_rate = load_wav_to_torch(filename)
67
+ if sampling_rate != self.sampling_rate:
68
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
69
+ sampling_rate, self.sampling_rate))
70
+ audio_norm = audio / self.max_wav_value
71
+ audio_norm = audio_norm.unsqueeze(0)
72
+ spec_filename = filename.replace(".wav", ".spec.pt")
73
+ if os.path.exists(spec_filename):
74
+ spec = torch.load(spec_filename)
75
+ else:
76
+ spec = spectrogram_torch(audio_norm, self.filter_length,
77
+ self.sampling_rate, self.hop_length, self.win_length,
78
+ center=False)
79
+ spec = torch.squeeze(spec, 0)
80
+ torch.save(spec, spec_filename)
81
+ return spec, audio_norm
82
+
83
+ def get_text(self, text):
84
+ if self.cleaned_text:
85
+ text_norm = cleaned_text_to_sequence(text)
86
+ else:
87
+ text_norm = text_to_sequence(text, self.text_cleaners)
88
+ if self.add_blank:
89
+ text_norm = commons.intersperse(text_norm, 0)
90
+ text_norm = torch.LongTensor(text_norm)
91
+ return text_norm
92
+
93
+ def __getitem__(self, index):
94
+ return self.get_audio_text_pair(self.audiopaths_and_text[index])
95
+
96
+ def __len__(self):
97
+ return len(self.audiopaths_and_text)
98
+
99
+
100
+ class TextAudioCollate():
101
+ """ Zero-pads model inputs and targets
102
+ """
103
+ def __init__(self, return_ids=False):
104
+ self.return_ids = return_ids
105
+
106
+ def __call__(self, batch):
107
+ """Collate's training batch from normalized text and aduio
108
+ PARAMS
109
+ ------
110
+ batch: [text_normalized, spec_normalized, wav_normalized]
111
+ """
112
+ # Right zero-pad all one-hot text sequences to max input length
113
+ _, ids_sorted_decreasing = torch.sort(
114
+ torch.LongTensor([x[1].size(1) for x in batch]),
115
+ dim=0, descending=True)
116
+
117
+ max_text_len = max([len(x[0]) for x in batch])
118
+ max_spec_len = max([x[1].size(1) for x in batch])
119
+ max_wav_len = max([x[2].size(1) for x in batch])
120
+
121
+ text_lengths = torch.LongTensor(len(batch))
122
+ spec_lengths = torch.LongTensor(len(batch))
123
+ wav_lengths = torch.LongTensor(len(batch))
124
+
125
+ text_padded = torch.LongTensor(len(batch), max_text_len)
126
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
127
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
128
+ text_padded.zero_()
129
+ spec_padded.zero_()
130
+ wav_padded.zero_()
131
+ for i in range(len(ids_sorted_decreasing)):
132
+ row = batch[ids_sorted_decreasing[i]]
133
+
134
+ text = row[0]
135
+ text_padded[i, :text.size(0)] = text
136
+ text_lengths[i] = text.size(0)
137
+
138
+ spec = row[1]
139
+ spec_padded[i, :, :spec.size(1)] = spec
140
+ spec_lengths[i] = spec.size(1)
141
+
142
+ wav = row[2]
143
+ wav_padded[i, :, :wav.size(1)] = wav
144
+ wav_lengths[i] = wav.size(1)
145
+
146
+ if self.return_ids:
147
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
148
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
149
+
150
+
151
+ """Multi speaker version"""
152
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
153
+ """
154
+ 1) loads audio, speaker_id, text pairs
155
+ 2) normalizes text and converts them to sequences of integers
156
+ 3) computes spectrograms from audio files.
157
+ """
158
+ def __init__(self, audiopaths_sid_text, hparams):
159
+ self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
160
+ self.text_cleaners = hparams.text_cleaners
161
+ self.max_wav_value = hparams.max_wav_value
162
+ self.sampling_rate = hparams.sampling_rate
163
+ self.filter_length = hparams.filter_length
164
+ self.hop_length = hparams.hop_length
165
+ self.win_length = hparams.win_length
166
+ self.sampling_rate = hparams.sampling_rate
167
+
168
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
169
+
170
+ self.add_blank = hparams.add_blank
171
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
172
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
173
+
174
+ random.seed(1234)
175
+ random.shuffle(self.audiopaths_sid_text)
176
+ self._filter()
177
+
178
+ def _filter(self):
179
+ """
180
+ Filter text & store spec lengths
181
+ """
182
+ # Store spectrogram lengths for Bucketing
183
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
184
+ # spec_length = wav_length // hop_length
185
+
186
+ audiopaths_sid_text_new = []
187
+ lengths = []
188
+ for audiopath, sid, text in self.audiopaths_sid_text:
189
+ if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
190
+ audiopaths_sid_text_new.append([audiopath, sid, text])
191
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
192
+ self.audiopaths_sid_text = audiopaths_sid_text_new
193
+ self.lengths = lengths
194
+
195
+ def get_audio_text_speaker_pair(self, audiopath_sid_text):
196
+ # separate filename, speaker_id and text
197
+ audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
198
+ text = self.get_text(text)
199
+ spec, wav = self.get_audio(audiopath)
200
+ sid = self.get_sid(sid)
201
+ return (text, spec, wav, sid)
202
+
203
+ def get_audio(self, filename):
204
+ audio, sampling_rate = load_wav_to_torch(filename)
205
+ if sampling_rate != self.sampling_rate:
206
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
207
+ sampling_rate, self.sampling_rate))
208
+ audio_norm = audio / self.max_wav_value
209
+ audio_norm = audio_norm.unsqueeze(0)
210
+ spec_filename = filename.replace(".wav", ".spec.pt")
211
+ if os.path.exists(spec_filename):
212
+ spec = torch.load(spec_filename)
213
+ else:
214
+ spec = spectrogram_torch(audio_norm, self.filter_length,
215
+ self.sampling_rate, self.hop_length, self.win_length,
216
+ center=False)
217
+ spec = torch.squeeze(spec, 0)
218
+ torch.save(spec, spec_filename)
219
+ return spec, audio_norm
220
+
221
+ def get_text(self, text):
222
+ if self.cleaned_text:
223
+ text_norm = cleaned_text_to_sequence(text)
224
+ else:
225
+ text_norm = text_to_sequence(text, self.text_cleaners)
226
+ if self.add_blank:
227
+ text_norm = commons.intersperse(text_norm, 0)
228
+ text_norm = torch.LongTensor(text_norm)
229
+ return text_norm
230
+
231
+ def get_sid(self, sid):
232
+ sid = torch.LongTensor([int(sid)])
233
+ return sid
234
+
235
+ def __getitem__(self, index):
236
+ return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
237
+
238
+ def __len__(self):
239
+ return len(self.audiopaths_sid_text)
240
+
241
+
242
+ class TextAudioSpeakerCollate():
243
+ """ Zero-pads model inputs and targets
244
+ """
245
+ def __init__(self, return_ids=False):
246
+ self.return_ids = return_ids
247
+
248
+ def __call__(self, batch):
249
+ """Collate's training batch from normalized text, audio and speaker identities
250
+ PARAMS
251
+ ------
252
+ batch: [text_normalized, spec_normalized, wav_normalized, sid]
253
+ """
254
+ # Right zero-pad all one-hot text sequences to max input length
255
+ _, ids_sorted_decreasing = torch.sort(
256
+ torch.LongTensor([x[1].size(1) for x in batch]),
257
+ dim=0, descending=True)
258
+
259
+ max_text_len = max([len(x[0]) for x in batch])
260
+ max_spec_len = max([x[1].size(1) for x in batch])
261
+ max_wav_len = max([x[2].size(1) for x in batch])
262
+
263
+ text_lengths = torch.LongTensor(len(batch))
264
+ spec_lengths = torch.LongTensor(len(batch))
265
+ wav_lengths = torch.LongTensor(len(batch))
266
+ sid = torch.LongTensor(len(batch))
267
+
268
+ text_padded = torch.LongTensor(len(batch), max_text_len)
269
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
270
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
271
+ text_padded.zero_()
272
+ spec_padded.zero_()
273
+ wav_padded.zero_()
274
+ for i in range(len(ids_sorted_decreasing)):
275
+ row = batch[ids_sorted_decreasing[i]]
276
+
277
+ text = row[0]
278
+ text_padded[i, :text.size(0)] = text
279
+ text_lengths[i] = text.size(0)
280
+
281
+ spec = row[1]
282
+ spec_padded[i, :, :spec.size(1)] = spec
283
+ spec_lengths[i] = spec.size(1)
284
+
285
+ wav = row[2]
286
+ wav_padded[i, :, :wav.size(1)] = wav
287
+ wav_lengths[i] = wav.size(1)
288
+
289
+ sid[i] = row[3]
290
+
291
+ if self.return_ids:
292
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
293
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
294
+
295
+
296
+ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
297
+ """
298
+ Maintain similar input lengths in a batch.
299
+ Length groups are specified by boundaries.
300
+ Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
301
+
302
+ It removes samples which are not included in the boundaries.
303
+ Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
304
+ """
305
+ def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
306
+ super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
307
+ self.lengths = dataset.lengths
308
+ self.batch_size = batch_size
309
+ self.boundaries = boundaries
310
+
311
+ self.buckets, self.num_samples_per_bucket = self._create_buckets()
312
+ self.total_size = sum(self.num_samples_per_bucket)
313
+ self.num_samples = self.total_size // self.num_replicas
314
+
315
+ def _create_buckets(self):
316
+ buckets = [[] for _ in range(len(self.boundaries) - 1)]
317
+ for i in range(len(self.lengths)):
318
+ length = self.lengths[i]
319
+ idx_bucket = self._bisect(length)
320
+ if idx_bucket != -1:
321
+ buckets[idx_bucket].append(i)
322
+
323
+ for i in range(len(buckets) - 1, 0, -1):
324
+ if len(buckets[i]) == 0:
325
+ buckets.pop(i)
326
+ self.boundaries.pop(i+1)
327
+
328
+ num_samples_per_bucket = []
329
+ for i in range(len(buckets)):
330
+ len_bucket = len(buckets[i])
331
+ total_batch_size = self.num_replicas * self.batch_size
332
+ rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
333
+ num_samples_per_bucket.append(len_bucket + rem)
334
+ return buckets, num_samples_per_bucket
335
+
336
+ def __iter__(self):
337
+ # deterministically shuffle based on epoch
338
+ g = torch.Generator()
339
+ g.manual_seed(self.epoch)
340
+
341
+ indices = []
342
+ if self.shuffle:
343
+ for bucket in self.buckets:
344
+ indices.append(torch.randperm(len(bucket), generator=g).tolist())
345
+ else:
346
+ for bucket in self.buckets:
347
+ indices.append(list(range(len(bucket))))
348
+
349
+ batches = []
350
+ for i in range(len(self.buckets)):
351
+ bucket = self.buckets[i]
352
+ len_bucket = len(bucket)
353
+ if len_bucket == 0:
354
+ continue
355
+ ids_bucket = indices[i]
356
+ num_samples_bucket = self.num_samples_per_bucket[i]
357
+
358
+ # add extra samples to make it evenly divisible
359
+ rem = num_samples_bucket - len_bucket
360
+ ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
361
+
362
+ # subsample
363
+ ids_bucket = ids_bucket[self.rank::self.num_replicas]
364
+
365
+ # batching
366
+ for j in range(len(ids_bucket) // self.batch_size):
367
+ batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
368
+ batches.append(batch)
369
+
370
+ if self.shuffle:
371
+ batch_ids = torch.randperm(len(batches), generator=g).tolist()
372
+ batches = [batches[i] for i in batch_ids]
373
+ self.batches = batches
374
+
375
+ assert len(self.batches) * self.batch_size == self.num_samples
376
+ return iter(self.batches)
377
+
378
+ def _bisect(self, x, lo=0, hi=None):
379
+ if hi is None:
380
+ hi = len(self.boundaries) - 1
381
+
382
+ if hi > lo:
383
+ mid = (hi + lo) // 2
384
+ if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
385
+ return mid
386
+ elif x <= self.boundaries[mid]:
387
+ return self._bisect(x, lo, mid)
388
+ else:
389
+ return self._bisect(x, mid + 1, hi)
390
+ else:
391
+ return -1
392
+
393
+ def __len__(self):
394
+ return self.num_samples // self.batch_size
inference.ipynb ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "pycharm": {
8
+ "name": "#%%\n"
9
+ }
10
+ },
11
+ "outputs": [],
12
+ "source": [
13
+ "%matplotlib inline\n",
14
+ "import matplotlib.pyplot as plt\n",
15
+ "import IPython.display as ipd\n",
16
+ "\n",
17
+ "import os\n",
18
+ "import json\n",
19
+ "import math\n",
20
+ "import torch\n",
21
+ "from torch import nn\n",
22
+ "from torch.nn import functional as F\n",
23
+ "from torch.utils.data import DataLoader\n",
24
+ "\n",
25
+ "import commons\n",
26
+ "import utils\n",
27
+ "from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n",
28
+ "from models import SynthesizerTrn\n",
29
+ "from text.symbols import symbols\n",
30
+ "from text import text_to_sequence\n",
31
+ "\n",
32
+ "from scipy.io.wavfile import write\n",
33
+ "\n",
34
+ "\n",
35
+ "def get_text(text, hps):\n",
36
+ " text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
37
+ " if hps.data.add_blank:\n",
38
+ " text_norm = commons.intersperse(text_norm, 0)\n",
39
+ " text_norm = torch.LongTensor(text_norm)\n",
40
+ " return text_norm"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "markdown",
45
+ "metadata": {
46
+ "pycharm": {
47
+ "name": "#%% md\n"
48
+ }
49
+ },
50
+ "source": [
51
+ "## Single Speaker"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": null,
57
+ "metadata": {
58
+ "pycharm": {
59
+ "name": "#%%\n"
60
+ }
61
+ },
62
+ "outputs": [],
63
+ "source": [
64
+ "hps = utils.get_hparams_from_file(\"configs/XXX.json\")"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": null,
70
+ "metadata": {
71
+ "pycharm": {
72
+ "name": "#%%\n"
73
+ }
74
+ },
75
+ "outputs": [],
76
+ "source": [
77
+ "net_g = SynthesizerTrn(\n",
78
+ " len(symbols),\n",
79
+ " hps.data.filter_length // 2 + 1,\n",
80
+ " hps.train.segment_size // hps.data.hop_length,\n",
81
+ " **hps.model).cuda()\n",
82
+ "_ = net_g.eval()\n",
83
+ "\n",
84
+ "_ = utils.load_checkpoint(\"/path/to/model.pth\", net_g, None)"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": null,
90
+ "metadata": {
91
+ "pycharm": {
92
+ "name": "#%%\n"
93
+ }
94
+ },
95
+ "outputs": [],
96
+ "source": [
97
+ "stn_tst = get_text(\"こんにちは\", hps)\n",
98
+ "with torch.no_grad():\n",
99
+ " x_tst = stn_tst.cuda().unsqueeze(0)\n",
100
+ " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
101
+ " audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
102
+ "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "markdown",
107
+ "metadata": {
108
+ "pycharm": {
109
+ "name": "#%% md\n"
110
+ }
111
+ },
112
+ "source": [
113
+ "## Multiple Speakers"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "metadata": {
120
+ "pycharm": {
121
+ "name": "#%%\n"
122
+ }
123
+ },
124
+ "outputs": [],
125
+ "source": [
126
+ "hps = utils.get_hparams_from_file(\"./configs/XXX.json\")"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "code",
131
+ "execution_count": null,
132
+ "metadata": {
133
+ "pycharm": {
134
+ "name": "#%%\n"
135
+ }
136
+ },
137
+ "outputs": [],
138
+ "source": [
139
+ "net_g = SynthesizerTrn(\n",
140
+ " len(symbols),\n",
141
+ " hps.data.filter_length // 2 + 1,\n",
142
+ " hps.train.segment_size // hps.data.hop_length,\n",
143
+ " n_speakers=hps.data.n_speakers,\n",
144
+ " **hps.model).cuda()\n",
145
+ "_ = net_g.eval()\n",
146
+ "\n",
147
+ "_ = utils.load_checkpoint(\"/path/to/model.pth\", net_g, None)"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "metadata": {
154
+ "pycharm": {
155
+ "name": "#%%\n"
156
+ }
157
+ },
158
+ "outputs": [],
159
+ "source": [
160
+ "stn_tst = get_text(\"こんにちは\", hps)\n",
161
+ "with torch.no_grad():\n",
162
+ " x_tst = stn_tst.cuda().unsqueeze(0)\n",
163
+ " x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
164
+ " sid = torch.LongTensor([4]).cuda()\n",
165
+ " audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
166
+ "ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
167
+ ]
168
+ },
169
+ {
170
+ "cell_type": "markdown",
171
+ "metadata": {
172
+ "pycharm": {
173
+ "name": "#%% md\n"
174
+ }
175
+ },
176
+ "source": [
177
+ "### Voice Conversion"
178
+ ]
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "execution_count": null,
183
+ "metadata": {
184
+ "pycharm": {
185
+ "name": "#%%\n"
186
+ }
187
+ },
188
+ "outputs": [],
189
+ "source": [
190
+ "dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)\n",
191
+ "collate_fn = TextAudioSpeakerCollate()\n",
192
+ "loader = DataLoader(dataset, num_workers=8, shuffle=False,\n",
193
+ " batch_size=1, pin_memory=True,\n",
194
+ " drop_last=True, collate_fn=collate_fn)\n",
195
+ "data_list = list(loader)"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": null,
201
+ "metadata": {
202
+ "pycharm": {
203
+ "name": "#%%\n"
204
+ }
205
+ },
206
+ "outputs": [],
207
+ "source": [
208
+ "with torch.no_grad():\n",
209
+ " x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda() for x in data_list[0]]\n",
210
+ " sid_tgt1 = torch.LongTensor([1]).cuda()\n",
211
+ " sid_tgt2 = torch.LongTensor([2]).cuda()\n",
212
+ " sid_tgt3 = torch.LongTensor([4]).cuda()\n",
213
+ " audio1 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data.cpu().float().numpy()\n",
214
+ " audio2 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt2)[0][0,0].data.cpu().float().numpy()\n",
215
+ " audio3 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt3)[0][0,0].data.cpu().float().numpy()\n",
216
+ "print(\"Original SID: %d\" % sid_src.item())\n",
217
+ "ipd.display(ipd.Audio(y[0].cpu().numpy(), rate=hps.data.sampling_rate, normalize=False))\n",
218
+ "print(\"Converted SID: %d\" % sid_tgt1.item())\n",
219
+ "ipd.display(ipd.Audio(audio1, rate=hps.data.sampling_rate, normalize=False))\n",
220
+ "print(\"Converted SID: %d\" % sid_tgt2.item())\n",
221
+ "ipd.display(ipd.Audio(audio2, rate=hps.data.sampling_rate, normalize=False))\n",
222
+ "print(\"Converted SID: %d\" % sid_tgt3.item())\n",
223
+ "ipd.display(ipd.Audio(audio3, rate=hps.data.sampling_rate, normalize=False))"
224
+ ]
225
+ }
226
+ ],
227
+ "metadata": {
228
+ "kernelspec": {
229
+ "display_name": "Python 3.7.9 64-bit",
230
+ "language": "python",
231
+ "name": "python3"
232
+ },
233
+ "language_info": {
234
+ "codemirror_mode": {
235
+ "name": "ipython",
236
+ "version": 3
237
+ },
238
+ "file_extension": ".py",
239
+ "mimetype": "text/x-python",
240
+ "name": "python",
241
+ "nbconvert_exporter": "python",
242
+ "pygments_lexer": "ipython3",
243
+ "version": "3.7.9"
244
+ },
245
+ "vscode": {
246
+ "interpreter": {
247
+ "hash": "c15292341d300295ca9f634d04c483f667a0c1d5ee0c309c2ac4e312cce8b8df"
248
+ }
249
+ }
250
+ },
251
+ "nbformat": 4,
252
+ "nbformat_minor": 4
253
+ }
losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l
mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
models.py ADDED
@@ -0,0 +1,534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import commons
8
+ import modules
9
+ import attentions
10
+ import monotonic_align
11
+
12
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
+ from commons import init_weights, get_padding
15
+
16
+
17
+ class StochasticDurationPredictor(nn.Module):
18
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
19
+ super().__init__()
20
+ filter_channels = in_channels # it needs to be removed from future version.
21
+ self.in_channels = in_channels
22
+ self.filter_channels = filter_channels
23
+ self.kernel_size = kernel_size
24
+ self.p_dropout = p_dropout
25
+ self.n_flows = n_flows
26
+ self.gin_channels = gin_channels
27
+
28
+ self.log_flow = modules.Log()
29
+ self.flows = nn.ModuleList()
30
+ self.flows.append(modules.ElementwiseAffine(2))
31
+ for i in range(n_flows):
32
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
33
+ self.flows.append(modules.Flip())
34
+
35
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
36
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
37
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
38
+ self.post_flows = nn.ModuleList()
39
+ self.post_flows.append(modules.ElementwiseAffine(2))
40
+ for i in range(4):
41
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
42
+ self.post_flows.append(modules.Flip())
43
+
44
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
45
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
46
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
47
+ if gin_channels != 0:
48
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
49
+
50
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
51
+ x = torch.detach(x)
52
+ x = self.pre(x)
53
+ if g is not None:
54
+ g = torch.detach(g)
55
+ x = x + self.cond(g)
56
+ x = self.convs(x, x_mask)
57
+ x = self.proj(x) * x_mask
58
+
59
+ if not reverse:
60
+ flows = self.flows
61
+ assert w is not None
62
+
63
+ logdet_tot_q = 0
64
+ h_w = self.post_pre(w)
65
+ h_w = self.post_convs(h_w, x_mask)
66
+ h_w = self.post_proj(h_w) * x_mask
67
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
68
+ z_q = e_q
69
+ for flow in self.post_flows:
70
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
71
+ logdet_tot_q += logdet_q
72
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
73
+ u = torch.sigmoid(z_u) * x_mask
74
+ z0 = (w - u) * x_mask
75
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
76
+ logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
77
+
78
+ logdet_tot = 0
79
+ z0, logdet = self.log_flow(z0, x_mask)
80
+ logdet_tot += logdet
81
+ z = torch.cat([z0, z1], 1)
82
+ for flow in flows:
83
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
84
+ logdet_tot = logdet_tot + logdet
85
+ nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
86
+ return nll + logq # [b]
87
+ else:
88
+ flows = list(reversed(self.flows))
89
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
90
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
91
+ for flow in flows:
92
+ z = flow(z, x_mask, g=x, reverse=reverse)
93
+ z0, z1 = torch.split(z, [1, 1], 1)
94
+ logw = z0
95
+ return logw
96
+
97
+
98
+ class DurationPredictor(nn.Module):
99
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
100
+ super().__init__()
101
+
102
+ self.in_channels = in_channels
103
+ self.filter_channels = filter_channels
104
+ self.kernel_size = kernel_size
105
+ self.p_dropout = p_dropout
106
+ self.gin_channels = gin_channels
107
+
108
+ self.drop = nn.Dropout(p_dropout)
109
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
110
+ self.norm_1 = modules.LayerNorm(filter_channels)
111
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
112
+ self.norm_2 = modules.LayerNorm(filter_channels)
113
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
114
+
115
+ if gin_channels != 0:
116
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
117
+
118
+ def forward(self, x, x_mask, g=None):
119
+ x = torch.detach(x)
120
+ if g is not None:
121
+ g = torch.detach(g)
122
+ x = x + self.cond(g)
123
+ x = self.conv_1(x * x_mask)
124
+ x = torch.relu(x)
125
+ x = self.norm_1(x)
126
+ x = self.drop(x)
127
+ x = self.conv_2(x * x_mask)
128
+ x = torch.relu(x)
129
+ x = self.norm_2(x)
130
+ x = self.drop(x)
131
+ x = self.proj(x * x_mask)
132
+ return x * x_mask
133
+
134
+
135
+ class TextEncoder(nn.Module):
136
+ def __init__(self,
137
+ n_vocab,
138
+ out_channels,
139
+ hidden_channels,
140
+ filter_channels,
141
+ n_heads,
142
+ n_layers,
143
+ kernel_size,
144
+ p_dropout):
145
+ super().__init__()
146
+ self.n_vocab = n_vocab
147
+ self.out_channels = out_channels
148
+ self.hidden_channels = hidden_channels
149
+ self.filter_channels = filter_channels
150
+ self.n_heads = n_heads
151
+ self.n_layers = n_layers
152
+ self.kernel_size = kernel_size
153
+ self.p_dropout = p_dropout
154
+
155
+ self.emb = nn.Embedding(n_vocab, hidden_channels)
156
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
157
+
158
+ self.encoder = attentions.Encoder(
159
+ hidden_channels,
160
+ filter_channels,
161
+ n_heads,
162
+ n_layers,
163
+ kernel_size,
164
+ p_dropout)
165
+ self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
166
+
167
+ def forward(self, x, x_lengths):
168
+ x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
169
+ x = torch.transpose(x, 1, -1) # [b, h, t]
170
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
171
+
172
+ x = self.encoder(x * x_mask, x_mask)
173
+ stats = self.proj(x) * x_mask
174
+
175
+ m, logs = torch.split(stats, self.out_channels, dim=1)
176
+ return x, m, logs, x_mask
177
+
178
+
179
+ class ResidualCouplingBlock(nn.Module):
180
+ def __init__(self,
181
+ channels,
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ n_flows=4,
187
+ gin_channels=0):
188
+ super().__init__()
189
+ self.channels = channels
190
+ self.hidden_channels = hidden_channels
191
+ self.kernel_size = kernel_size
192
+ self.dilation_rate = dilation_rate
193
+ self.n_layers = n_layers
194
+ self.n_flows = n_flows
195
+ self.gin_channels = gin_channels
196
+
197
+ self.flows = nn.ModuleList()
198
+ for i in range(n_flows):
199
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
200
+ self.flows.append(modules.Flip())
201
+
202
+ def forward(self, x, x_mask, g=None, reverse=False):
203
+ if not reverse:
204
+ for flow in self.flows:
205
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
206
+ else:
207
+ for flow in reversed(self.flows):
208
+ x = flow(x, x_mask, g=g, reverse=reverse)
209
+ return x
210
+
211
+
212
+ class PosteriorEncoder(nn.Module):
213
+ def __init__(self,
214
+ in_channels,
215
+ out_channels,
216
+ hidden_channels,
217
+ kernel_size,
218
+ dilation_rate,
219
+ n_layers,
220
+ gin_channels=0):
221
+ super().__init__()
222
+ self.in_channels = in_channels
223
+ self.out_channels = out_channels
224
+ self.hidden_channels = hidden_channels
225
+ self.kernel_size = kernel_size
226
+ self.dilation_rate = dilation_rate
227
+ self.n_layers = n_layers
228
+ self.gin_channels = gin_channels
229
+
230
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
231
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
232
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
233
+
234
+ def forward(self, x, x_lengths, g=None):
235
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
236
+ x = self.pre(x) * x_mask
237
+ x = self.enc(x, x_mask, g=g)
238
+ stats = self.proj(x) * x_mask
239
+ m, logs = torch.split(stats, self.out_channels, dim=1)
240
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
241
+ return z, m, logs, x_mask
242
+
243
+
244
+ class Generator(torch.nn.Module):
245
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
246
+ super(Generator, self).__init__()
247
+ self.num_kernels = len(resblock_kernel_sizes)
248
+ self.num_upsamples = len(upsample_rates)
249
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
250
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
251
+
252
+ self.ups = nn.ModuleList()
253
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
254
+ self.ups.append(weight_norm(
255
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
256
+ k, u, padding=(k-u)//2)))
257
+
258
+ self.resblocks = nn.ModuleList()
259
+ for i in range(len(self.ups)):
260
+ ch = upsample_initial_channel//(2**(i+1))
261
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
262
+ self.resblocks.append(resblock(ch, k, d))
263
+
264
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
265
+ self.ups.apply(init_weights)
266
+
267
+ if gin_channels != 0:
268
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
269
+
270
+ def forward(self, x, g=None):
271
+ x = self.conv_pre(x)
272
+ if g is not None:
273
+ x = x + self.cond(g)
274
+
275
+ for i in range(self.num_upsamples):
276
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
277
+ x = self.ups[i](x)
278
+ xs = None
279
+ for j in range(self.num_kernels):
280
+ if xs is None:
281
+ xs = self.resblocks[i*self.num_kernels+j](x)
282
+ else:
283
+ xs += self.resblocks[i*self.num_kernels+j](x)
284
+ x = xs / self.num_kernels
285
+ x = F.leaky_relu(x)
286
+ x = self.conv_post(x)
287
+ x = torch.tanh(x)
288
+
289
+ return x
290
+
291
+ def remove_weight_norm(self):
292
+ print('Removing weight norm...')
293
+ for l in self.ups:
294
+ remove_weight_norm(l)
295
+ for l in self.resblocks:
296
+ l.remove_weight_norm()
297
+
298
+
299
+ class DiscriminatorP(torch.nn.Module):
300
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
301
+ super(DiscriminatorP, self).__init__()
302
+ self.period = period
303
+ self.use_spectral_norm = use_spectral_norm
304
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
305
+ self.convs = nn.ModuleList([
306
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
307
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
308
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
309
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
310
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
311
+ ])
312
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
313
+
314
+ def forward(self, x):
315
+ fmap = []
316
+
317
+ # 1d to 2d
318
+ b, c, t = x.shape
319
+ if t % self.period != 0: # pad first
320
+ n_pad = self.period - (t % self.period)
321
+ x = F.pad(x, (0, n_pad), "reflect")
322
+ t = t + n_pad
323
+ x = x.view(b, c, t // self.period, self.period)
324
+
325
+ for l in self.convs:
326
+ x = l(x)
327
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
328
+ fmap.append(x)
329
+ x = self.conv_post(x)
330
+ fmap.append(x)
331
+ x = torch.flatten(x, 1, -1)
332
+
333
+ return x, fmap
334
+
335
+
336
+ class DiscriminatorS(torch.nn.Module):
337
+ def __init__(self, use_spectral_norm=False):
338
+ super(DiscriminatorS, self).__init__()
339
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
340
+ self.convs = nn.ModuleList([
341
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
342
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
343
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
344
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
345
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
346
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
347
+ ])
348
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
349
+
350
+ def forward(self, x):
351
+ fmap = []
352
+
353
+ for l in self.convs:
354
+ x = l(x)
355
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
356
+ fmap.append(x)
357
+ x = self.conv_post(x)
358
+ fmap.append(x)
359
+ x = torch.flatten(x, 1, -1)
360
+
361
+ return x, fmap
362
+
363
+
364
+ class MultiPeriodDiscriminator(torch.nn.Module):
365
+ def __init__(self, use_spectral_norm=False):
366
+ super(MultiPeriodDiscriminator, self).__init__()
367
+ periods = [2,3,5,7,11]
368
+
369
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
370
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
371
+ self.discriminators = nn.ModuleList(discs)
372
+
373
+ def forward(self, y, y_hat):
374
+ y_d_rs = []
375
+ y_d_gs = []
376
+ fmap_rs = []
377
+ fmap_gs = []
378
+ for i, d in enumerate(self.discriminators):
379
+ y_d_r, fmap_r = d(y)
380
+ y_d_g, fmap_g = d(y_hat)
381
+ y_d_rs.append(y_d_r)
382
+ y_d_gs.append(y_d_g)
383
+ fmap_rs.append(fmap_r)
384
+ fmap_gs.append(fmap_g)
385
+
386
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
387
+
388
+
389
+
390
+ class SynthesizerTrn(nn.Module):
391
+ """
392
+ Synthesizer for Training
393
+ """
394
+
395
+ def __init__(self,
396
+ n_vocab,
397
+ spec_channels,
398
+ segment_size,
399
+ inter_channels,
400
+ hidden_channels,
401
+ filter_channels,
402
+ n_heads,
403
+ n_layers,
404
+ kernel_size,
405
+ p_dropout,
406
+ resblock,
407
+ resblock_kernel_sizes,
408
+ resblock_dilation_sizes,
409
+ upsample_rates,
410
+ upsample_initial_channel,
411
+ upsample_kernel_sizes,
412
+ n_speakers=0,
413
+ gin_channels=0,
414
+ use_sdp=True,
415
+ **kwargs):
416
+
417
+ super().__init__()
418
+ self.n_vocab = n_vocab
419
+ self.spec_channels = spec_channels
420
+ self.inter_channels = inter_channels
421
+ self.hidden_channels = hidden_channels
422
+ self.filter_channels = filter_channels
423
+ self.n_heads = n_heads
424
+ self.n_layers = n_layers
425
+ self.kernel_size = kernel_size
426
+ self.p_dropout = p_dropout
427
+ self.resblock = resblock
428
+ self.resblock_kernel_sizes = resblock_kernel_sizes
429
+ self.resblock_dilation_sizes = resblock_dilation_sizes
430
+ self.upsample_rates = upsample_rates
431
+ self.upsample_initial_channel = upsample_initial_channel
432
+ self.upsample_kernel_sizes = upsample_kernel_sizes
433
+ self.segment_size = segment_size
434
+ self.n_speakers = n_speakers
435
+ self.gin_channels = gin_channels
436
+
437
+ self.use_sdp = use_sdp
438
+
439
+ self.enc_p = TextEncoder(n_vocab,
440
+ inter_channels,
441
+ hidden_channels,
442
+ filter_channels,
443
+ n_heads,
444
+ n_layers,
445
+ kernel_size,
446
+ p_dropout)
447
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
448
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
449
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
450
+
451
+ if use_sdp:
452
+ self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
453
+ else:
454
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
455
+
456
+ if n_speakers > 1:
457
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
458
+
459
+ def forward(self, x, x_lengths, y, y_lengths, sid=None):
460
+
461
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
462
+ if self.n_speakers > 0:
463
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
464
+ else:
465
+ g = None
466
+
467
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
468
+ z_p = self.flow(z, y_mask, g=g)
469
+
470
+ with torch.no_grad():
471
+ # negative cross-entropy
472
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
473
+ neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
474
+ neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
475
+ neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
476
+ neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
477
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
478
+
479
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
480
+ attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
481
+
482
+ w = attn.sum(2)
483
+ if self.use_sdp:
484
+ l_length = self.dp(x, x_mask, w, g=g)
485
+ l_length = l_length / torch.sum(x_mask)
486
+ else:
487
+ logw_ = torch.log(w + 1e-6) * x_mask
488
+ logw = self.dp(x, x_mask, g=g)
489
+ l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
490
+
491
+ # expand prior
492
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
493
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
494
+
495
+ z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
496
+ o = self.dec(z_slice, g=g)
497
+ return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
498
+
499
+ def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
500
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
501
+ if self.n_speakers > 0:
502
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
503
+ else:
504
+ g = None
505
+
506
+ if self.use_sdp:
507
+ logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
508
+ else:
509
+ logw = self.dp(x, x_mask, g=g)
510
+ w = torch.exp(logw) * x_mask * length_scale
511
+ w_ceil = torch.ceil(w)
512
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
513
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
514
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
515
+ attn = commons.generate_path(w_ceil, attn_mask)
516
+
517
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
518
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
519
+
520
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
521
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
522
+ o = self.dec((z * y_mask)[:,:,:max_len], g=g)
523
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
524
+
525
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
526
+ assert self.n_speakers > 0, "n_speakers have to be larger than 0."
527
+ g_src = self.emb_g(sid_src).unsqueeze(-1)
528
+ g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
529
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
530
+ z_p = self.flow(z, y_mask, g=g_src)
531
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
532
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt)
533
+ return o_hat, y_mask, (z, z_p, z_hat)
534
+
models/aru/aru.png ADDED
models/aru/aru.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0caa5490199588c9f850afbaa8dfac92b0d20b2b78b5bdb4a4a50d5018c4cb4
3
+ size 479268167
models/config.json ADDED
@@ -0,0 +1,948 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "epochs": 600,
7
+ "learning_rate": 0.0002,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 16,
14
+ "fp16_run": true,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 8192,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0
21
+ },
22
+ "data": {
23
+ "training_files": "/content/vits-finetuning/filelists/haruka_train.txt.cleaned",
24
+ "validation_files": "/content/vits-finetuning/filelists/haruka_val.txt.cleaned",
25
+ "text_cleaners": [
26
+ "japanese_cleaners"
27
+ ],
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 22050,
30
+ "filter_length": 1024,
31
+ "hop_length": 256,
32
+ "win_length": 1024,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null,
36
+ "add_blank": true,
37
+ "n_speakers": 804,
38
+ "cleaned_text": true
39
+ },
40
+ "model": {
41
+ "inter_channels": 192,
42
+ "hidden_channels": 192,
43
+ "filter_channels": 768,
44
+ "n_heads": 2,
45
+ "n_layers": 6,
46
+ "kernel_size": 3,
47
+ "p_dropout": 0.1,
48
+ "resblock": "1",
49
+ "resblock_kernel_sizes": [
50
+ 3,
51
+ 7,
52
+ 11
53
+ ],
54
+ "resblock_dilation_sizes": [
55
+ [
56
+ 1,
57
+ 3,
58
+ 5
59
+ ],
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ]
70
+ ],
71
+ "upsample_rates": [
72
+ 8,
73
+ 8,
74
+ 2,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256
87
+ },
88
+ "speakers": [
89
+ "\u7279\u522b\u5468",
90
+ "\u65e0\u58f0\u94c3\u9e7f",
91
+ "\u4e1c\u6d77\u5e1d\u7687\uff08\u5e1d\u5b9d\uff0c\u5e1d\u738b\uff09",
92
+ "\u4e38\u5584\u65af\u57fa",
93
+ "\u5bcc\u58eb\u5947\u8ff9",
94
+ "\u5c0f\u6817\u5e3d",
95
+ "\u9ec4\u91d1\u8239",
96
+ "\u4f0f\u7279\u52a0",
97
+ "\u5927\u548c\u8d64\u9aa5",
98
+ "\u5927\u6811\u5feb\u8f66",
99
+ "\u8349\u4e0a\u98de",
100
+ "\u83f1\u4e9a\u9a6c\u900a",
101
+ "\u76ee\u767d\u9ea6\u6606",
102
+ "\u795e\u9e70",
103
+ "\u597d\u6b4c\u5267",
104
+ "\u6210\u7530\u767d\u4ec1",
105
+ "\u9c81\u9053\u592b\u8c61\u5f81\uff08\u7687\u5e1d\uff09",
106
+ "\u6c14\u69fd",
107
+ "\u7231\u4e3d\u6570\u7801",
108
+ "\u661f\u4e91\u5929\u7a7a",
109
+ "\u7389\u85fb\u5341\u5b57",
110
+ "\u7f8e\u5999\u59ff\u52bf",
111
+ "\u7435\u7436\u6668\u5149",
112
+ "\u6469\u8036\u91cd\u70ae",
113
+ "\u66fc\u57ce\u8336\u5ea7",
114
+ "\u7f8e\u6d66\u6ce2\u65c1",
115
+ "\u76ee\u767d\u8d56\u6069",
116
+ "\u83f1\u66d9",
117
+ "\u96ea\u4e2d\u7f8e\u4eba",
118
+ "\u7c73\u6d74",
119
+ "\u827e\u5c3c\u65af\u98ce\u795e",
120
+ "\u7231\u4e3d\u901f\u5b50\uff08\u7231\u4e3d\u5feb\u5b50\uff09",
121
+ "\u7231\u6155\u7ec7\u59ec",
122
+ "\u7a3b\u8377\u4e00",
123
+ "\u80dc\u5229\u5956\u5238",
124
+ "\u7a7a\u4e2d\u795e\u5bab",
125
+ "\u8363\u8fdb\u95ea\u8000",
126
+ "\u771f\u673a\u4f36",
127
+ "\u5ddd\u4e0a\u516c\u4e3b",
128
+ "\u9ec4\u91d1\u57ce\uff08\u9ec4\u91d1\u57ce\u5e02\uff09",
129
+ "\u6a31\u82b1\u8fdb\u738b",
130
+ "\u91c7\u73e0",
131
+ "\u65b0\u5149\u98ce",
132
+ "\u4e1c\u5546\u53d8\u9769",
133
+ "\u8d85\u7ea7\u5c0f\u6d77\u6e7e",
134
+ "\u9192\u76ee\u98de\u9e70\uff08\u5bc4\u5bc4\u5b50\uff09",
135
+ "\u8352\u6f20\u82f1\u96c4",
136
+ "\u4e1c\u701b\u4f50\u6566",
137
+ "\u4e2d\u5c71\u5e86\u5178",
138
+ "\u6210\u7530\u5927\u8fdb",
139
+ "\u897f\u91ce\u82b1",
140
+ "\u6625\u4e3d\uff08\u4e4c\u62c9\u62c9\uff09",
141
+ "\u9752\u7af9\u56de\u5fc6",
142
+ "\u5fae\u5149\u98de\u9a79",
143
+ "\u7f8e\u4e3d\u5468\u65e5",
144
+ "\u5f85\u517c\u798f\u6765",
145
+ "mr cb\uff08cb\u5148\u751f\uff09",
146
+ "\u540d\u5c06\u6012\u6d9b\uff08\u540d\u5c06\u6237\u4ec1\uff09",
147
+ "\u76ee\u767d\u591a\u4f2f",
148
+ "\u4f18\u79c0\u7d20\u8d28",
149
+ "\u5e1d\u738b\u5149\u8f89",
150
+ "\u5f85\u517c\u8bd7\u6b4c\u5267",
151
+ "\u751f\u91ce\u72c4\u675c\u65af",
152
+ "\u76ee\u767d\u5584\u4fe1",
153
+ "\u5927\u62d3\u592a\u9633\u795e",
154
+ "\u53cc\u6da1\u8f6e\uff08\u4e24\u7acb\u76f4\uff0c\u4e24\u55b7\u5c04\uff0c\u4e8c\u9505\u5934\uff0c\u9006\u55b7\u5c04\uff09",
155
+ "\u91cc\u89c1\u5149\u94bb\uff08\u8428\u6258\u8bfa\u91d1\u521a\u77f3\uff09",
156
+ "\u5317\u90e8\u7384\u9a79",
157
+ "\u6a31\u82b1\u5343\u4ee3\u738b",
158
+ "\u5929\u72fc\u661f\u8c61\u5f81",
159
+ "\u76ee\u767d\u963f\u5c14\u4e39",
160
+ "\u516b\u91cd\u65e0\u654c",
161
+ "\u9e64\u4e38\u521a\u5fd7",
162
+ "\u76ee\u767d\u5149\u660e",
163
+ "\u6210\u7530\u62dc\u4ec1\uff08\u6210\u7530\u8def\uff09",
164
+ "\u4e5f\u6587\u6444\u8f89",
165
+ "\u5c0f\u6797\u5386\u5947",
166
+ "\u5317\u6e2f\u706b\u5c71",
167
+ "\u5947\u9510\u9a8f",
168
+ "\u82e6\u6da9\u7cd6\u971c",
169
+ "\u5c0f\u5c0f\u8695\u8327",
170
+ "\u9a8f\u5ddd\u624b\u7eb2\uff08\u7eff\u5e3d\u6076\u9b54\uff09",
171
+ "\u79cb\u5ddd\u5f25\u751f\uff08\u5c0f\u5c0f\u7406\u4e8b\u957f\uff09",
172
+ "\u4e59\u540d\u53f2\u60a6\u5b50\uff08\u4e59\u540d\u8bb0\u8005\uff09",
173
+ "\u6850\u751f\u9662\u8475",
174
+ "\u5b89\u5fc3\u6cfd\u523a\u523a\u7f8e",
175
+ "\u6a2b\u672c\u7406\u5b50",
176
+ "\u795e\u91cc\u7eeb\u534e\uff08\u9f9f\u9f9f\uff09",
177
+ "\u7434",
178
+ "\u7a7a\uff08\u7a7a\u54e5\uff09",
179
+ "\u4e3d\u838e",
180
+ "\u8367\uff08\u8367\u59b9\uff09",
181
+ "\u82ad\u82ad\u62c9",
182
+ "\u51ef\u4e9a",
183
+ "\u8fea\u5362\u514b",
184
+ "\u96f7\u6cfd",
185
+ "\u5b89\u67cf",
186
+ "\u6e29\u8fea",
187
+ "\u9999\u83f1",
188
+ "\u5317\u6597",
189
+ "\u884c\u79cb",
190
+ "\u9b48",
191
+ "\u51dd\u5149",
192
+ "\u53ef\u8389",
193
+ "\u949f\u79bb",
194
+ "\u83f2\u8c22\u5c14\uff08\u7687\u5973\uff09",
195
+ "\u73ed\u5c3c\u7279",
196
+ "\u8fbe\u8fbe\u5229\u4e9a\uff08\u516c\u5b50\uff09",
197
+ "\u8bfa\u827e\u5c14\uff08\u5973\u4ec6\uff09",
198
+ "\u4e03\u4e03",
199
+ "\u91cd\u4e91",
200
+ "\u7518\u96e8\uff08\u6930\u7f8a\uff09",
201
+ "\u963f\u8d1d\u591a",
202
+ "\u8fea\u5965\u5a1c\uff08\u732b\u732b\uff09",
203
+ "\u83ab\u5a1c",
204
+ "\u523b\u6674",
205
+ "\u7802\u7cd6",
206
+ "\u8f9b\u7131",
207
+ "\u7f57\u838e\u8389\u4e9a",
208
+ "\u80e1\u6843",
209
+ "\u67ab\u539f\u4e07\u53f6\uff08\u4e07\u53f6\uff09",
210
+ "\u70df\u7eef",
211
+ "\u5bb5\u5bab",
212
+ "\u6258\u9a6c",
213
+ "\u4f18\u83c8",
214
+ "\u96f7\u7535\u5c06\u519b\uff08\u96f7\u795e\uff09",
215
+ "\u65e9\u67da",
216
+ "\u73ca\u745a\u5bab\u5fc3\u6d77\uff08\u5fc3\u6d77\uff0c\u6263\u6263\u7c73\uff09",
217
+ "\u4e94\u90ce",
218
+ "\u4e5d\u6761\u88df\u7f57",
219
+ "\u8352\u6cf7\u4e00\u6597\uff08\u4e00\u6597\uff09",
220
+ "\u57c3\u6d1b\u4f0a",
221
+ "\u7533\u9e64",
222
+ "\u516b\u91cd\u795e\u5b50\uff08\u795e\u5b50\uff09",
223
+ "\u795e\u91cc\u7eeb\u4eba\uff08\u7eeb\u4eba\uff09",
224
+ "\u591c\u5170",
225
+ "\u4e45\u5c90\u5fcd",
226
+ "\u9e7f\u91ce\u82d1\u5e73\u85cf",
227
+ "\u63d0\u7eb3\u91cc",
228
+ "\u67ef\u83b1",
229
+ "\u591a\u8389",
230
+ "\u4e91\u5807",
231
+ "\u7eb3\u897f\u59b2\uff08\u8349\u795e\uff09",
232
+ "\u6df1\u6e0a\u4f7f\u5f92",
233
+ "\u59ae\u9732",
234
+ "\u8d5b\u8bfa",
235
+ "\u503a\u52a1\u5904\u7406\u4eba",
236
+ "\u574e\u8482\u4e1d",
237
+ "\u771f\u5f13\u5feb\u8f66",
238
+ "\u79cb\u4eba",
239
+ "\u671b\u65cf",
240
+ "\u827e\u5c14\u83f2",
241
+ "\u827e\u8389\u4e1d",
242
+ "\u827e\u4f26",
243
+ "\u963f\u6d1b\u74e6",
244
+ "\u5929\u91ce",
245
+ "\u5929\u76ee\u5341\u4e94",
246
+ "\u611a\u4eba\u4f17-\u5b89\u5fb7\u70c8",
247
+ "\u5b89\u987a",
248
+ "\u5b89\u897f",
249
+ "\u8475",
250
+ "\u9752\u6728",
251
+ "\u8352\u5ddd\u5e78\u6b21",
252
+ "\u8352\u8c37",
253
+ "\u6709\u6cfd",
254
+ "\u6d45\u5ddd",
255
+ "\u9ebb\u7f8e",
256
+ "\u51dd\u5149\u52a9\u624b",
257
+ "\u963f\u6258",
258
+ "\u7afa\u5b50",
259
+ "\u767e\u8bc6",
260
+ "\u767e\u95fb",
261
+ "\u767e\u6653",
262
+ "\u767d\u672f",
263
+ "\u8d1d\u96c5\u7279\u4e3d\u5947",
264
+ "\u4e3d\u5854",
265
+ "\u5931\u843d\u8ff7\u8fed",
266
+ "\u7f2d\u4e71\u661f\u68d8",
267
+ "\u4f0a\u7538",
268
+ "\u4f0f\u7279\u52a0\u5973\u5b69",
269
+ "\u72c2\u70ed\u84dd\u8c03",
270
+ "\u8389\u8389\u5a05",
271
+ "\u841d\u838e\u8389\u5a05",
272
+ "\u516b\u91cd\u6a31",
273
+ "\u516b\u91cd\u971e",
274
+ "\u5361\u83b2",
275
+ "\u7b2c\u516d\u591c\u60f3\u66f2",
276
+ "\u5361\u841d\u5c14",
277
+ "\u59ec\u5b50",
278
+ "\u6781\u5730\u6218\u5203",
279
+ "\u5e03\u6d1b\u59ae\u5a05",
280
+ "\u6b21\u751f\u94f6\u7ffc",
281
+ "\u7406\u4e4b\u5f8b\u8005%26\u5e0c\u513f",
282
+ "\u7406\u4e4b\u5f8b\u8005",
283
+ "\u8ff7\u57ce\u9a87\u5154",
284
+ "\u5e0c\u513f",
285
+ "\u9b47\u591c\u661f\u6e0a",
286
+ "\u9ed1\u5e0c\u513f",
287
+ "\u5e15\u6735\u83f2\u8389\u4e1d",
288
+ "\u4e0d\u706d\u661f\u951a",
289
+ "\u5929\u5143\u9a91\u82f1",
290
+ "\u5e7d\u5170\u9edb\u5c14",
291
+ "\u6d3e\u8499bh3",
292
+ "\u7231\u9171",
293
+ "\u7eef\u7389\u4e38",
294
+ "\u5fb7\u4e3d\u838e",
295
+ "\u6708\u4e0b\u521d\u62e5",
296
+ "\u6714\u591c\u89c2\u661f",
297
+ "\u66ae\u5149\u9a91\u58eb",
298
+ "\u683c\u857e\u4fee",
299
+ "\u7559\u4e91\u501f\u98ce\u771f\u541b",
300
+ "\u6885\u6bd4\u4e4c\u65af",
301
+ "\u4eff\u72b9\u5927",
302
+ "\u514b\u83b1\u56e0",
303
+ "\u5723\u5251\u5e7d\u5170\u9edb\u5c14",
304
+ "\u5996\u7cbe\u7231\u8389",
305
+ "\u7279\u65af\u62c9zero",
306
+ "\u82cd\u7384",
307
+ "\u82e5\u6c34",
308
+ "\u897f\u7433",
309
+ "\u6234\u56e0\u65af\u96f7\u5e03",
310
+ "\u8d1d\u62c9",
311
+ "\u8d64\u9e22",
312
+ "\u9547\u9b42\u6b4c",
313
+ "\u6e21\u9e26",
314
+ "\u4eba\u4e4b\u5f8b\u8005",
315
+ "\u7231\u8389\u5e0c\u96c5",
316
+ "\u5929\u7a79\u6e38\u4fa0",
317
+ "\u742a\u4e9a\u5a1c",
318
+ "\u7a7a\u4e4b\u5f8b\u8005",
319
+ "\u85aa\u708e\u4e4b\u5f8b\u8005",
320
+ "\u4e91\u58a8\u4e39\u5fc3",
321
+ "\u7b26\u534e",
322
+ "\u8bc6\u4e4b\u5f8b\u8005",
323
+ "\u7279\u74e6\u6797",
324
+ "\u7ef4\u5c14\u8587",
325
+ "\u82bd\u8863",
326
+ "\u96f7\u4e4b\u5f8b\u8005",
327
+ "\u65ad\u7f6a\u5f71\u821e",
328
+ "\u963f\u6ce2\u5c3c\u4e9a",
329
+ "\u698e\u672c",
330
+ "\u5384\u5c3c\u65af\u7279",
331
+ "\u6076\u9f99",
332
+ "\u8303\u4e8c\u7237",
333
+ "\u6cd5\u62c9",
334
+ "\u611a\u4eba\u4f17\u58eb\u5175",
335
+ "\u611a\u4eba\u4f17\u58eb\u5175a",
336
+ "\u611a\u4eba\u4f17\u58eb\u5175b",
337
+ "\u611a\u4eba\u4f17\u58eb\u5175c",
338
+ "\u611a\u4eba\u4f17a",
339
+ "\u611a\u4eba\u4f17b",
340
+ "\u98de\u98de",
341
+ "\u83f2\u5229\u514b\u65af",
342
+ "\u5973\u6027\u8ddf\u968f\u8005",
343
+ "\u9022\u5ca9",
344
+ "\u6446\u6e21\u4eba",
345
+ "\u72c2\u8e81\u7684\u7537\u4eba",
346
+ "\u5965\u5179",
347
+ "\u8299\u841d\u62c9",
348
+ "\u8ddf\u968f\u8005",
349
+ "\u871c\u6c41\u751f\u7269",
350
+ "\u9ec4\u9ebb\u5b50",
351
+ "\u6e0a\u4e0a",
352
+ "\u85e4\u6728",
353
+ "\u6df1\u89c1",
354
+ "\u798f\u672c",
355
+ "\u8299\u84c9",
356
+ "\u53e4\u6cfd",
357
+ "\u53e4\u7530",
358
+ "\u53e4\u5c71",
359
+ "\u53e4\u8c37\u6607",
360
+ "\u5085\u4e09\u513f",
361
+ "\u9ad8\u8001\u516d",
362
+ "\u77ff\u5de5\u5192",
363
+ "\u5143\u592a",
364
+ "\u5fb7\u5b89\u516c",
365
+ "\u8302\u624d\u516c",
366
+ "\u6770\u62c9\u5fb7",
367
+ "\u845b\u7f57\u4e3d",
368
+ "\u91d1\u5ffd\u5f8b",
369
+ "\u516c\u4fca",
370
+ "\u9505\u5df4",
371
+ "\u6b4c\u5fb7",
372
+ "\u963f\u8c6a",
373
+ "\u72d7\u4e09\u513f",
374
+ "\u845b\u745e\u4e1d",
375
+ "\u82e5\u5fc3",
376
+ "\u963f\u5c71\u5a46",
377
+ "\u602a\u9e1f",
378
+ "\u5e7f\u7af9",
379
+ "\u89c2\u6d77",
380
+ "\u5173\u5b8f",
381
+ "\u871c\u6c41\u536b\u5175",
382
+ "\u5b88\u536b1",
383
+ "\u50b2\u6162\u7684\u5b88\u536b",
384
+ "\u5bb3\u6015\u7684\u5b88\u536b",
385
+ "\u8d35\u5b89",
386
+ "\u76d6\u4f0a",
387
+ "\u963f\u521b",
388
+ "\u54c8\u592b\u4e39",
389
+ "\u65e5\u8bed\u963f\u8d1d\u591a\uff08\u91ce\u5c9b\u5065\u513f\uff09",
390
+ "\u65e5\u8bed\u57c3\u6d1b\u4f0a\uff08\u9ad8\u57a3\u5f69\u9633\uff09",
391
+ "\u65e5\u8bed\u5b89\u67cf\uff08\u77f3\u89c1\u821e\u83dc\u9999\uff09",
392
+ "\u65e5\u8bed\u795e\u91cc\u7eeb\u534e\uff08\u65e9\u89c1\u6c99\u7ec7\uff09",
393
+ "\u65e5\u8bed\u795e\u91cc\u7eeb\u4eba\uff08\u77f3\u7530\u5f70\uff09",
394
+ "\u65e5\u8bed\u767d\u672f\uff08\u6e38\u4f50\u6d69\u4e8c\uff09",
395
+ "\u65e5\u8bed\u82ad\u82ad\u62c9\uff08\u9b3c\u5934\u660e\u91cc\uff09",
396
+ "\u65e5\u8bed\u5317\u6597\uff08\u5c0f\u6e05\u6c34\u4e9a\u7f8e\uff09",
397
+ "\u65e5\u8bed\u73ed\u5c3c\u7279\uff08\u9022\u5742\u826f\u592a\uff09",
398
+ "\u65e5\u8bed\u574e\u8482\u4e1d\uff08\u67da\u6728\u51c9\u9999\uff09",
399
+ "\u65e5\u8bed\u91cd\u4e91\uff08\u9f50\u85e4\u58ee\u9a6c\uff09",
400
+ "\u65e5\u8bed\u67ef\u83b1\uff08\u524d\u5ddd\u51c9\u5b50\uff09",
401
+ "\u65e5\u8bed\u8d5b\u8bfa\uff08\u5165\u91ce\u81ea\u7531\uff09",
402
+ "\u65e5\u8bed\u6234\u56e0\u65af\u96f7\u5e03\uff08\u6d25\u7530\u5065\u6b21\u90ce\uff09",
403
+ "\u65e5\u8bed\u8fea\u5362\u514b\uff08\u5c0f\u91ce\u8d24\u7ae0\uff09",
404
+ "\u65e5\u8bed\u8fea\u5965\u5a1c\uff08\u4e95\u6cfd\u8bd7\u7ec7\uff09",
405
+ "\u65e5\u8bed\u591a\u8389\uff08\u91d1\u7530\u670b\u5b50\uff09",
406
+ "\u65e5\u8bed\u4f18\u83c8\uff08\u4f50\u85e4\u5229\u5948\uff09",
407
+ "\u65e5\u8bed\u83f2\u8c22\u5c14\uff08\u5185\u7530\u771f\u793c\uff09",
408
+ "\u65e5\u8bed\u7518\u96e8\uff08\u4e0a\u7530\u4e3d\u5948\uff09",
409
+ "\u65e5\u8bed\uff08\u7560\u4e2d\u7950\uff09",
410
+ "\u65e5\u8bed\u9e7f\u91ce\u9662\u5e73\u85cf\uff08\u4e95\u53e3\u7950\u4e00\uff09",
411
+ "\u65e5\u8bed\u7a7a\uff08\u5800\u6c5f\u77ac\uff09",
412
+ "\u65e5\u8bed\u8367\uff08\u60a0\u6728\u78a7\uff09",
413
+ "\u65e5\u8bed\u80e1\u6843\uff08\u9ad8\u6865\u674e\u4f9d\uff09",
414
+ "\u65e5\u8bed\u4e00\u6597\uff08\u897f\u5ddd\u8d35\u6559\uff09",
415
+ "\u65e5\u8bed\u51ef\u4e9a\uff08\u9e1f\u6d77\u6d69\u8f85\uff09",
416
+ "\u65e5\u8bed\u4e07\u53f6\uff08\u5c9b\u5d0e\u4fe1\u957f\uff09",
417
+ "\u65e5\u8bed\u523b\u6674\uff08\u559c\u591a\u6751\u82f1\u68a8\uff09",
418
+ "\u65e5\u8bed\u53ef\u8389\uff08\u4e45\u91ce\u7f8e\u54b2\uff09",
419
+ "\u65e5\u8bed\u5fc3\u6d77\uff08\u4e09\u68ee\u94c3\u5b50\uff09",
420
+ "\u65e5\u8bed\u4e5d\u6761\u88df\u7f57\uff08\u6fd1\u6237\u9ebb\u6c99\u7f8e\uff09",
421
+ "\u65e5\u8bed\u4e3d\u838e\uff08\u7530\u4e2d\u7406\u60e0\uff09",
422
+ "\u65e5\u8bed\u83ab\u5a1c\uff08\u5c0f\u539f\u597d\u7f8e\uff09",
423
+ "\u65e5\u8bed\u7eb3\u897f\u59b2\uff08\u7530\u6751\u7531\u52a0\u8389\uff09",
424
+ "\u65e5\u8bed\u59ae\u9732\uff08\u91d1\u5143\u5bff\u5b50\uff09",
425
+ "\u65e5\u8bed\u51dd\u5149\uff08\u5927\u539f\u6c99\u8036\u9999\uff09",
426
+ "\u65e5\u8bed\u8bfa\u827e\u5c14\uff08\u9ad8\u5c3e\u594f\u97f3\uff09",
427
+ "\u65e5\u8bed\u5965\u5179\uff08\u589e\u8c37\u5eb7\u7eaa\uff09",
428
+ "\u65e5\u8bed\u6d3e\u8499\uff08\u53e4\u8d3a\u8475\uff09",
429
+ "\u65e5\u8bed\u7434\uff08\u658b\u85e4\u5343\u548c\uff09",
430
+ "\u65e5\u8bed\u4e03\u4e03\uff08\u7530\u6751\u7531\u52a0\u8389\uff09",
431
+ "\u65e5\u8bed\u96f7\u7535\u5c06\u519b\uff08\u6cfd\u57ce\u7f8e\u96ea\uff09",
432
+ "\u65e5\u8bed\u96f7\u6cfd\uff08\u5185\u5c71\u6602\u8f89\uff09",
433
+ "\u65e5\u8bed\u7f57\u838e\u8389\u4e9a\uff08\u52a0\u9688\u4e9a\u8863\uff09",
434
+ "\u65e5\u8bed\u65e9\u67da\uff08\u6d32\u5d0e\u7eeb\uff09",
435
+ "\u65e5\u8bed\u6563\u5175\uff08\u67ff\u539f\u5f7b\u4e5f\uff09",
436
+ "\u65e5\u8bed\u7533\u9e64\uff08\u5ddd\u6f84\u7eeb\u5b50\uff09",
437
+ "\u65e5\u8bed\u4e45\u5c90\u5fcd\uff08\u6c34\u6865\u9999\u7ec7\uff09",
438
+ "\u65e5\u8bed\u5973\u58eb\uff08\u5e84\u5b50\u88d5\u8863\uff09",
439
+ "\u65e5\u8bed\u7802\u7cd6\uff08\u85e4\u7530\u831c\uff09",
440
+ "\u65e5\u8bed\u8fbe\u8fbe\u5229\u4e9a\uff08\u6728\u6751\u826f\u5e73\uff09",
441
+ "\u65e5\u8bed\u6258\u9a6c\uff08\u68ee\u7530\u6210\u4e00\uff09",
442
+ "\u65e5\u8bed\u63d0\u7eb3\u91cc\uff08\u5c0f\u6797\u6c99\u82d7\uff09",
443
+ "\u65e5\u8bed\u6e29\u8fea\uff08\u6751\u6fd1\u6b65\uff09",
444
+ "\u65e5\u8bed\u9999\u83f1\uff08\u5c0f\u6cfd\u4e9a\u674e\uff09",
445
+ "\u65e5\u8bed\u9b48\uff08\u677e\u5188\u796f\u4e1e\uff09",
446
+ "\u65e5\u8bed\u884c\u79cb\uff08\u7686\u5ddd\u7eaf\u5b50\uff09",
447
+ "\u65e5\u8bed\u8f9b\u7131\uff08\u9ad8\u6865\u667a\u79cb\uff09",
448
+ "\u65e5\u8bed\u516b\u91cd\u795e\u5b50\uff08\u4f50\u4ed3\u7eeb\u97f3\uff09",
449
+ "\u65e5\u8bed\u70df\u7eef\uff08\u82b1\u5b88\u7531\u7f8e\u91cc\uff09",
450
+ "\u65e5\u8bed\u591c\u5170\uff08\u8fdc\u85e4\u7eeb\uff09",
451
+ "\u65e5\u8bed\u5bb5\u5bab\uff08\u690d\u7530\u4f73\u5948\uff09",
452
+ "\u65e5\u8bed\u4e91\u5807\uff08\u5c0f\u5ca9\u4e95\u5c0f\u9e1f\uff09",
453
+ "\u65e5\u8bed\u949f\u79bb\uff08\u524d\u91ce\u667a\u662d\uff09",
454
+ "\u6770\u514b",
455
+ "\u963f\u5409",
456
+ "\u6c5f\u821f",
457
+ "\u9274\u79cb",
458
+ "\u5609\u4e49",
459
+ "\u7eaa\u82b3",
460
+ "\u666f\u6f84",
461
+ "\u7ecf\u7eb6",
462
+ "\u666f\u660e",
463
+ "\u664b\u4f18",
464
+ "\u963f\u9e20",
465
+ "\u9152\u5ba2",
466
+ "\u4e54\u5c14",
467
+ "\u4e54\u745f\u592b",
468
+ "\u7ea6\u987f",
469
+ "\u4e54\u4f0a\u65af",
470
+ "\u5c45\u5b89",
471
+ "\u541b\u541b",
472
+ "\u987a\u5409",
473
+ "\u7eaf\u4e5f",
474
+ "\u91cd\u4f50",
475
+ "\u5927\u5c9b\u7eaf\u5e73",
476
+ "\u84b2\u6cfd",
477
+ "\u52d8\u89e3\u7531\u5c0f\u8def\u5065\u4e09\u90ce",
478
+ "\u67ab",
479
+ "\u67ab\u539f\u4e49\u5e86",
480
+ "\u836b\u5c71",
481
+ "\u7532\u6590\u7530\u9f8d\u99ac",
482
+ "\u6d77\u6597",
483
+ "\u60df\u795e\u6674\u4e4b\u4ecb",
484
+ "\u9e7f\u91ce\u5948\u5948",
485
+ "\u5361\u7435\u8389\u4e9a",
486
+ "\u51ef\u745f\u7433",
487
+ "\u52a0\u85e4\u4fe1\u609f",
488
+ "\u52a0\u85e4\u6d0b\u5e73",
489
+ "\u80dc\u5bb6",
490
+ "\u8305\u847a\u4e00\u5e86",
491
+ "\u548c\u662d",
492
+ "\u4e00\u6b63",
493
+ "\u4e00\u9053",
494
+ "\u6842\u4e00",
495
+ "\u5e86\u6b21\u90ce",
496
+ "\u963f\u8d24",
497
+ "\u5065\u53f8",
498
+ "\u5065\u6b21\u90ce",
499
+ "\u5065\u4e09\u90ce",
500
+ "\u5929\u7406",
501
+ "\u6740\u624ba",
502
+ "\u6740\u624bb",
503
+ "\u6728\u5357\u674f\u5948",
504
+ "\u6728\u6751",
505
+ "\u56fd\u738b",
506
+ "\u6728\u4e0b",
507
+ "\u5317\u6751",
508
+ "\u6e05\u60e0",
509
+ "\u6e05\u4eba",
510
+ "\u514b\u5217\u95e8\u7279",
511
+ "\u9a91\u58eb",
512
+ "\u5c0f\u6797",
513
+ "\u5c0f\u6625",
514
+ "\u5eb7\u62c9\u5fb7",
515
+ "\u5927\u8089\u4e38",
516
+ "\u7434\u7f8e",
517
+ "\u5b8f\u4e00",
518
+ "\u5eb7\u4ecb",
519
+ "\u5e78\u5fb7",
520
+ "\u9ad8\u5584",
521
+ "\u68a2",
522
+ "\u514b\u7f57\u7d22",
523
+ "\u4e45\u4fdd",
524
+ "\u4e5d\u6761\u9570\u6cbb",
525
+ "\u4e45\u6728\u7530",
526
+ "\u6606\u94a7",
527
+ "\u83ca\u5730\u541b",
528
+ "\u4e45\u5229\u987b",
529
+ "\u9ed1\u7530",
530
+ "\u9ed1\u6cfd\u4eac\u4e4b\u4ecb",
531
+ "\u54cd\u592a",
532
+ "\u5c9a\u59d0",
533
+ "\u5170\u6eaa",
534
+ "\u6f9c\u9633",
535
+ "\u52b3\u4f26\u65af",
536
+ "\u4e50\u660e",
537
+ "\u83b1\u8bfa",
538
+ "\u83b2",
539
+ "\u826f\u5b50",
540
+ "\u674e\u5f53",
541
+ "\u674e\u4e01",
542
+ "\u5c0f\u4e50",
543
+ "\u7075",
544
+ "\u5c0f\u73b2",
545
+ "\u7433\u7405a",
546
+ "\u7433\u7405b",
547
+ "\u5c0f\u5f6c",
548
+ "\u5c0f\u5fb7",
549
+ "\u5c0f\u697d",
550
+ "\u5c0f\u9f99",
551
+ "\u5c0f\u5434",
552
+ "\u5c0f\u5434\u7684\u8bb0\u5fc6",
553
+ "\u7406\u6b63",
554
+ "\u963f\u9f99",
555
+ "\u5362\u5361",
556
+ "\u6d1b\u6210",
557
+ "\u7f57\u5de7",
558
+ "\u5317\u98ce\u72fc",
559
+ "\u5362\u6b63",
560
+ "\u840d\u59e5\u59e5",
561
+ "\u524d\u7530",
562
+ "\u771f\u663c",
563
+ "\u9ebb\u7eaa",
564
+ "\u771f",
565
+ "\u611a\u4eba\u4f17-\u9a6c\u514b\u897f\u59c6",
566
+ "\u5973\u6027a",
567
+ "\u5973\u6027b",
568
+ "\u5973\u6027a\u7684\u8ddf\u968f\u8005",
569
+ "\u963f\u5b88",
570
+ "\u739b\u683c\u4e3d\u7279",
571
+ "\u771f\u7406",
572
+ "\u739b\u4e54\u4e3d",
573
+ "\u739b\u6587",
574
+ "\u6b63\u80dc",
575
+ "\u660c\u4fe1",
576
+ "\u5c06\u53f8",
577
+ "\u6b63\u4eba",
578
+ "\u8def\u7237",
579
+ "\u8001\u7ae0",
580
+ "\u677e\u7530",
581
+ "\u677e\u672c",
582
+ "\u677e\u6d66",
583
+ "\u677e\u5742",
584
+ "\u8001\u5b5f",
585
+ "\u5b5f\u4e39",
586
+ "\u5546\u4eba\u968f\u4ece",
587
+ "\u4f20\u4ee4\u5175",
588
+ "\u7c73\u6b47\u5c14",
589
+ "\u5fa1\u8206\u6e90\u4e00\u90ce",
590
+ "\u5fa1\u8206\u6e90\u6b21\u90ce",
591
+ "\u5343\u5ca9\u519b\u6559\u5934",
592
+ "\u5343\u5ca9\u519b\u58eb\u5175",
593
+ "\u660e\u535a",
594
+ "\u660e\u4fca",
595
+ "\u7f8e\u94c3",
596
+ "\u7f8e\u548c",
597
+ "\u963f\u5e78",
598
+ "\u524a\u6708\u7b51\u9633\u771f\u541b",
599
+ "\u94b1\u773c\u513f",
600
+ "\u68ee\u5f66",
601
+ "\u5143\u52a9",
602
+ "\u7406\u6c34\u53e0\u5c71\u771f\u541b",
603
+ "\u7406\u6c34\u758a\u5c71\u771f\u541b",
604
+ "\u6731\u8001\u677f",
605
+ "\u6728\u6728",
606
+ "\u6751\u4e0a",
607
+ "\u6751\u7530",
608
+ "\u6c38\u91ce",
609
+ "\u957f\u91ce\u539f\u9f99\u4e4b\u4ecb",
610
+ "\u957f\u6fd1",
611
+ "\u4e2d\u91ce\u5fd7\u4e43",
612
+ "\u83dc\u83dc\u5b50",
613
+ "\u6960\u6960",
614
+ "\u6210\u6fd1",
615
+ "\u963f\u5185",
616
+ "\u5b81\u7984",
617
+ "\u725b\u5fd7",
618
+ "\u4fe1\u535a",
619
+ "\u4f38\u592b",
620
+ "\u91ce\u65b9",
621
+ "\u8bfa\u62c9",
622
+ "\u7eaa\u9999",
623
+ "\u8bfa\u66fc",
624
+ "\u4fee\u5973",
625
+ "\u7eaf\u6c34\u7cbe\u7075",
626
+ "\u5c0f\u5ddd",
627
+ "\u5c0f\u4ed3\u6faa",
628
+ "\u5188\u6797",
629
+ "\u5188\u5d0e\u7ed8\u91cc\u9999",
630
+ "\u5188\u5d0e\u9646\u6597",
631
+ "\u5965\u62c9\u592b",
632
+ "\u8001\u79d1",
633
+ "\u9b3c\u5a46\u5a46",
634
+ "\u5c0f\u91ce\u5bfa",
635
+ "\u5927\u6cb3\u539f\u4e94\u53f3\u536b\u95e8",
636
+ "\u5927\u4e45\u4fdd\u5927\u4ecb",
637
+ "\u5927\u68ee",
638
+ "\u5927\u52a9",
639
+ "\u5965\u7279",
640
+ "\u6d3e\u8499",
641
+ "\u6d3e\u84992",
642
+ "\u75c5\u4ebaa",
643
+ "\u75c5\u4ebab",
644
+ "\u5df4\u987f",
645
+ "\u6d3e\u6069",
646
+ "\u670b\u4e49",
647
+ "\u56f4\u89c2\u7fa4\u4f17",
648
+ "\u56f4\u89c2\u7fa4\u4f17a",
649
+ "\u56f4\u89c2\u7fa4\u4f17b",
650
+ "\u56f4\u89c2\u7fa4\u4f17c",
651
+ "\u56f4\u89c2\u7fa4\u4f17d",
652
+ "\u56f4\u89c2\u7fa4\u4f17e",
653
+ "\u94dc\u96c0",
654
+ "\u963f\u80a5",
655
+ "\u5174\u53d4",
656
+ "\u8001\u5468\u53d4",
657
+ "\u516c\u4e3b",
658
+ "\u5f7c\u5f97",
659
+ "\u4e7e\u5b50",
660
+ "\u828a\u828a",
661
+ "\u4e7e\u73ae",
662
+ "\u7eee\u547d",
663
+ "\u675e\u5e73",
664
+ "\u79cb\u6708",
665
+ "\u6606\u6069",
666
+ "\u96f7\u7535\u5f71",
667
+ "\u5170\u9053\u5c14",
668
+ "\u96f7\u8499\u5fb7",
669
+ "\u5192\u5931\u7684\u5e15\u62c9\u5fb7",
670
+ "\u4f36\u4e00",
671
+ "\u73b2\u82b1",
672
+ "\u963f\u4ec1",
673
+ "\u5bb6\u81e3\u4eec",
674
+ "\u68a8\u7ed8",
675
+ "\u8363\u6c5f",
676
+ "\u620e\u4e16",
677
+ "\u6d6a\u4eba",
678
+ "\u7f57\u4f0a\u65af",
679
+ "\u5982\u610f",
680
+ "\u51c9\u5b50",
681
+ "\u5f69\u9999",
682
+ "\u9152\u4e95",
683
+ "\u5742\u672c",
684
+ "\u6714\u6b21\u90ce",
685
+ "\u6b66\u58eba",
686
+ "\u6b66\u58ebb",
687
+ "\u6b66\u58ebc",
688
+ "\u6b66\u58ebd",
689
+ "\u73ca\u745a",
690
+ "\u4e09\u7530",
691
+ "\u838e\u62c9",
692
+ "\u7b39\u91ce",
693
+ "\u806a\u7f8e",
694
+ "\u806a",
695
+ "\u5c0f\u767e\u5408",
696
+ "\u6563\u5175",
697
+ "\u5bb3\u6015\u7684\u5c0f\u5218",
698
+ "\u8212\u4f2f\u7279",
699
+ "\u8212\u8328",
700
+ "\u6d77\u9f99",
701
+ "\u4e16\u5b50",
702
+ "\u8c22\u5c14\u76d6",
703
+ "\u5bb6\u4e01",
704
+ "\u5546\u534e",
705
+ "\u6c99\u5bc5",
706
+ "\u963f\u5347",
707
+ "\u67f4\u7530",
708
+ "\u963f\u8302",
709
+ "\u5f0f\u5927\u5c06",
710
+ "\u6e05\u6c34",
711
+ "\u5fd7\u6751\u52d8\u5175\u536b",
712
+ "\u65b0\u4e4b\u4e1e",
713
+ "\u5fd7\u7ec7",
714
+ "\u77f3\u5934",
715
+ "\u8bd7\u7fbd",
716
+ "\u8bd7\u7b60",
717
+ "\u77f3\u58ee",
718
+ "\u7fd4\u592a",
719
+ "\u6b63\u4e8c",
720
+ "\u5468\u5e73",
721
+ "\u8212\u6768",
722
+ "\u9f50\u683c\u8299\u4e3d\u96c5",
723
+ "\u5973\u58eb",
724
+ "\u601d\u52e4",
725
+ "\u516d\u6307\u4e54\u745f",
726
+ "\u611a\u4eba\u4f17\u5c0f\u5175d",
727
+ "\u611a\u4eba\u4f17\u5c0f\u5175a",
728
+ "\u611a\u4eba\u4f17\u5c0f\u5175b",
729
+ "\u611a\u4eba\u4f17\u5c0f\u5175c",
730
+ "\u5434\u8001\u4e94",
731
+ "\u5434\u8001\u4e8c",
732
+ "\u6ed1\u5934\u9b3c",
733
+ "\u8a00\u7b11",
734
+ "\u5434\u8001\u4e03",
735
+ "\u58eb\u5175h",
736
+ "\u58eb\u5175i",
737
+ "\u58eb\u5175a",
738
+ "\u58eb\u5175b",
739
+ "\u58eb\u5175c",
740
+ "\u58eb\u5175d",
741
+ "\u58eb\u5175e",
742
+ "\u58eb\u5175f",
743
+ "\u58eb\u5175g",
744
+ "\u594f\u592a",
745
+ "\u65af\u5766\u5229",
746
+ "\u6387\u661f\u652b\u8fb0\u5929\u541b",
747
+ "\u5c0f\u5934",
748
+ "\u5927\u6b66",
749
+ "\u9676\u4e49\u9686",
750
+ "\u6749\u672c",
751
+ "\u82cf\u897f",
752
+ "\u5acc\u7591\u4ebaa",
753
+ "\u5acc\u7591\u4ebab",
754
+ "\u5acc\u7591\u4ebac",
755
+ "\u5acc\u7591\u4ebad",
756
+ "\u65af\u4e07",
757
+ "\u5251\u5ba2a",
758
+ "\u5251\u5ba2b",
759
+ "\u963f\u4e8c",
760
+ "\u5fe0\u80dc",
761
+ "\u5fe0\u592b",
762
+ "\u963f\u656c",
763
+ "\u5b5d\u5229",
764
+ "\u9e70\u53f8\u8fdb",
765
+ "\u9ad8\u5c71",
766
+ "\u4e5d\u6761\u5b5d\u884c",
767
+ "\u6bc5",
768
+ "\u7af9\u5185",
769
+ "\u62d3\u771f",
770
+ "\u5353\u4e5f",
771
+ "\u592a\u90ce\u4e38",
772
+ "\u6cf0\u52d2",
773
+ "\u624b\u5c9b",
774
+ "\u54f2\u5e73",
775
+ "\u54f2\u592b",
776
+ "\u6258\u514b",
777
+ "\u5927boss",
778
+ "\u963f\u5f3a",
779
+ "\u6258\u5c14\u5fb7\u62c9",
780
+ "\u65c1\u89c2\u8005",
781
+ "\u5929\u6210",
782
+ "\u963f\u5927",
783
+ "\u8482\u739b\u4e4c\u65af",
784
+ "\u63d0\u7c73",
785
+ "\u6237\u7530",
786
+ "\u963f\u4e09",
787
+ "\u4e00\u8d77\u7684\u4eba",
788
+ "\u5fb7\u7530",
789
+ "\u5fb7\u957f",
790
+ "\u667a\u6811",
791
+ "\u5229\u5f66",
792
+ "\u80d6\u4e4e\u4e4e\u7684\u65c5\u884c\u8005",
793
+ "\u85cf\u5b9d\u4ebaa",
794
+ "\u85cf\u5b9d\u4ebab",
795
+ "\u85cf\u5b9d\u4ebac",
796
+ "\u85cf\u5b9d\u4ebad",
797
+ "\u963f\u7947",
798
+ "\u6052\u96c4",
799
+ "\u9732\u5b50",
800
+ "\u8bdd\u5267\u56e2\u56e2\u957f",
801
+ "\u5185\u6751",
802
+ "\u4e0a\u91ce",
803
+ "\u4e0a\u6749",
804
+ "\u8001\u6234",
805
+ "\u8001\u9ad8",
806
+ "\u8001\u8d3e",
807
+ "\u8001\u58a8",
808
+ "\u8001\u5b59",
809
+ "\u5929\u67a2\u661f",
810
+ "\u8001\u4e91",
811
+ "\u6709\u4e50\u658b",
812
+ "\u4e11\u96c4",
813
+ "\u4e4c\u7ef4",
814
+ "\u74e6\u4eac",
815
+ "\u83f2\u5c14\u6208\u9edb\u7279",
816
+ "\u7ef4\u591a\u5229\u4e9a",
817
+ "\u8587\u5c14",
818
+ "\u74e6\u683c\u7eb3",
819
+ "\u963f\u5916",
820
+ "\u4f8d\u5973",
821
+ "\u74e6\u62c9",
822
+ "\u671b\u96c5",
823
+ "\u5b9b\u70df",
824
+ "\u742c\u7389",
825
+ "\u6218\u58eba",
826
+ "\u6218\u58ebb",
827
+ "\u6e21\u8fba",
828
+ "\u6e21\u90e8",
829
+ "\u963f\u4f1f",
830
+ "\u6587\u749f",
831
+ "\u6587\u6e0a",
832
+ "\u97e6\u5c14\u7eb3",
833
+ "\u738b\u6273\u624b",
834
+ "\u6b66\u6c9b",
835
+ "\u6653\u98de",
836
+ "\u8f9b\u7a0b",
837
+ "\u661f\u706b",
838
+ "\u661f\u7a00",
839
+ "\u8f9b\u79c0",
840
+ "\u79c0\u534e",
841
+ "\u963f\u65ed",
842
+ "\u5f90\u5218\u5e08",
843
+ "\u77e2\u90e8",
844
+ "\u516b\u6728",
845
+ "\u5c71\u4e0a",
846
+ "\u963f\u9633",
847
+ "\u989c\u7b11",
848
+ "\u5eb7\u660e",
849
+ "\u6cf0\u4e45",
850
+ "\u5b89\u6b66",
851
+ "\u77e2\u7530\u5e78\u559c",
852
+ "\u77e2\u7530\u8f9b\u559c",
853
+ "\u4e49\u575a",
854
+ "\u83ba\u513f",
855
+ "\u76c8\u4e30",
856
+ "\u5b9c\u5e74",
857
+ "\u94f6\u674f",
858
+ "\u9038\u8f69",
859
+ "\u6a2a\u5c71",
860
+ "\u6c38\u8d35",
861
+ "\u6c38\u4e1a",
862
+ "\u5609\u4e45",
863
+ "\u5409\u5ddd",
864
+ "\u4e49\u9ad8",
865
+ "\u7528\u9ad8",
866
+ "\u9633\u592a",
867
+ "\u5143\u84c9",
868
+ "\u73a5\u8f89",
869
+ "\u6bd3\u534e",
870
+ "\u6709\u9999",
871
+ "\u5e78\u4e5f",
872
+ "\u7531\u771f",
873
+ "\u7ed3\u83dc",
874
+ "\u97f5\u5b81",
875
+ "\u767e\u5408",
876
+ "\u767e\u5408\u534e",
877
+ "\u5c24\u82cf\u6ce2\u592b",
878
+ "\u88d5\u5b50",
879
+ "\u60a0\u7b56",
880
+ "\u60a0\u4e5f",
881
+ "\u4e8e\u5ae3",
882
+ "\u67da\u5b50",
883
+ "\u8001\u90d1",
884
+ "\u6b63\u8302",
885
+ "\u5fd7\u6210",
886
+ "\u82b7\u5de7",
887
+ "\u77e5\u6613",
888
+ "\u652f\u652f",
889
+ "\u5468\u826f",
890
+ "\u73e0\u51fd",
891
+ "\u795d\u660e",
892
+ "\u795d\u6d9b"
893
+ ],
894
+ "symbols": [
895
+ "_",
896
+ ",",
897
+ ".",
898
+ "!",
899
+ "?",
900
+ "-",
901
+ "~",
902
+ "\u2026",
903
+ "A",
904
+ "E",
905
+ "I",
906
+ "N",
907
+ "O",
908
+ "Q",
909
+ "U",
910
+ "a",
911
+ "b",
912
+ "d",
913
+ "e",
914
+ "f",
915
+ "g",
916
+ "h",
917
+ "i",
918
+ "j",
919
+ "k",
920
+ "l",
921
+ "m",
922
+ "n",
923
+ "o",
924
+ "p",
925
+ "r",
926
+ "s",
927
+ "t",
928
+ "u",
929
+ "v",
930
+ "w",
931
+ "y",
932
+ "z",
933
+ "\u0283",
934
+ "\u02a7",
935
+ "\u02a6",
936
+ "\u026f",
937
+ "\u0279",
938
+ "\u0259",
939
+ "\u0265",
940
+ "\u207c",
941
+ "\u02b0",
942
+ "`",
943
+ "\u2192",
944
+ "\u2193",
945
+ "\u2191",
946
+ " "
947
+ ]
948
+ }
models/haruka/haruka.png ADDED
models/haruka/haruka.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a64ffc3a76e36d5db6292edf978639c469b09d9cde6fcff96795ae49f0ca029b
3
+ size 479268167
models/hifumi/hifumi.png ADDED
models/hifumi/hifumi.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb8f86ef857682b17d770423ed62dc89506aa263fe972ad91ce1fd1546af438f
3
+ size 479328189
models/kayoko/kayoko.png ADDED
models/kayoko/kayoko.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc30f8f85adb304dc4be88c6acb0369dca652c10341de4155dbe147aec218936
3
+ size 479268167
models/koharu/koharu.png ADDED
models/koharu/koharu.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e49edbb3b3cb692abbb6ffd44bf2102f90d5e5d759a5445d4f22a64d939d78d1
3
+ size 479328190
models/metadata.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "aru": {
3
+ "enable": true,
4
+ "name_en": "Aru",
5
+ "name_jp": "アル",
6
+ "model": "./models/aru/aru.pth",
7
+ "avatar": "./models/aru/aru.png",
8
+ "example_text": "はい、便利屋68の陸八魔です。"
9
+ },
10
+ "haruka": {
11
+ "enable": true,
12
+ "name_en": "Haruka",
13
+ "name_jp": "ハルカ",
14
+ "model": "./models/haruka/haruka.pth",
15
+ "avatar": "./models/haruka/haruka.png",
16
+ "example_text": "はい?私が必要ですか?え、うう、そ、そんな…。"
17
+ },
18
+ "hifumi": {
19
+ "enable": true,
20
+ "name_en": "Hifumi",
21
+ "name_jp": "ヒフミ",
22
+ "model": "./models/hifumi/hifumi.pth",
23
+ "avatar": "./models/hifumi/hifumi.png",
24
+ "example_text": "これですか…?これはペロロ様です!可愛いでしょ!"
25
+ },
26
+ "kayoko": {
27
+ "enable": true,
28
+ "name_en": "Kayoko",
29
+ "name_jp": "カヨコ",
30
+ "model": "./models/kayoko/kayoko.pth",
31
+ "avatar": "./models/kayoko/kayoko.png",
32
+ "example_text": "なんか用?まぁ、問題があったら解決してあげるけど。"
33
+ },
34
+ "koharu": {
35
+ "enable": true,
36
+ "name_en": "Koharu",
37
+ "name_jp": "コハル",
38
+ "model": "./models/koharu/koharu.pth",
39
+ "avatar": "./models/koharu/koharu.png",
40
+ "example_text": "わ、私の前で、そこをフリをとか許さないから!"
41
+ },
42
+ "mutsuki": {
43
+ "enable": true,
44
+ "name_en": "Mutsuki",
45
+ "name_jp": "ムツキ",
46
+ "model": "./models/mutsuki/mutsuki.pth",
47
+ "avatar": "./models/mutsuki/mutsuki.png",
48
+ "example_text": "くふふ~。照れる表情、面白~い"
49
+ }
50
+ }
models/mutsuki/mutsuki.png ADDED
models/mutsuki/mutsuki.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f80f5ac225922d2e8b7cc71f2c8e21c99d01407160cd18ea42e071de1a6ab3aa
3
+ size 479268167
modules.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import commons
13
+ from commons import init_weights, get_padding
14
+ from transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37
+ super().__init__()
38
+ self.in_channels = in_channels
39
+ self.hidden_channels = hidden_channels
40
+ self.out_channels = out_channels
41
+ self.kernel_size = kernel_size
42
+ self.n_layers = n_layers
43
+ self.p_dropout = p_dropout
44
+ assert n_layers > 1, "Number of layers should be larger than 0."
45
+
46
+ self.conv_layers = nn.ModuleList()
47
+ self.norm_layers = nn.ModuleList()
48
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49
+ self.norm_layers.append(LayerNorm(hidden_channels))
50
+ self.relu_drop = nn.Sequential(
51
+ nn.ReLU(),
52
+ nn.Dropout(p_dropout))
53
+ for _ in range(n_layers-1):
54
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55
+ self.norm_layers.append(LayerNorm(hidden_channels))
56
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57
+ self.proj.weight.data.zero_()
58
+ self.proj.bias.data.zero_()
59
+
60
+ def forward(self, x, x_mask):
61
+ x_org = x
62
+ for i in range(self.n_layers):
63
+ x = self.conv_layers[i](x * x_mask)
64
+ x = self.norm_layers[i](x)
65
+ x = self.relu_drop(x)
66
+ x = x_org + self.proj(x)
67
+ return x * x_mask
68
+
69
+
70
+ class DDSConv(nn.Module):
71
+ """
72
+ Dialted and Depth-Separable Convolution
73
+ """
74
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75
+ super().__init__()
76
+ self.channels = channels
77
+ self.kernel_size = kernel_size
78
+ self.n_layers = n_layers
79
+ self.p_dropout = p_dropout
80
+
81
+ self.drop = nn.Dropout(p_dropout)
82
+ self.convs_sep = nn.ModuleList()
83
+ self.convs_1x1 = nn.ModuleList()
84
+ self.norms_1 = nn.ModuleList()
85
+ self.norms_2 = nn.ModuleList()
86
+ for i in range(n_layers):
87
+ dilation = kernel_size ** i
88
+ padding = (kernel_size * dilation - dilation) // 2
89
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90
+ groups=channels, dilation=dilation, padding=padding
91
+ ))
92
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93
+ self.norms_1.append(LayerNorm(channels))
94
+ self.norms_2.append(LayerNorm(channels))
95
+
96
+ def forward(self, x, x_mask, g=None):
97
+ if g is not None:
98
+ x = x + g
99
+ for i in range(self.n_layers):
100
+ y = self.convs_sep[i](x * x_mask)
101
+ y = self.norms_1[i](y)
102
+ y = F.gelu(y)
103
+ y = self.convs_1x1[i](y)
104
+ y = self.norms_2[i](y)
105
+ y = F.gelu(y)
106
+ y = self.drop(y)
107
+ x = x + y
108
+ return x * x_mask
109
+
110
+
111
+ class WN(torch.nn.Module):
112
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113
+ super(WN, self).__init__()
114
+ assert(kernel_size % 2 == 1)
115
+ self.hidden_channels =hidden_channels
116
+ self.kernel_size = kernel_size,
117
+ self.dilation_rate = dilation_rate
118
+ self.n_layers = n_layers
119
+ self.gin_channels = gin_channels
120
+ self.p_dropout = p_dropout
121
+
122
+ self.in_layers = torch.nn.ModuleList()
123
+ self.res_skip_layers = torch.nn.ModuleList()
124
+ self.drop = nn.Dropout(p_dropout)
125
+
126
+ if gin_channels != 0:
127
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129
+
130
+ for i in range(n_layers):
131
+ dilation = dilation_rate ** i
132
+ padding = int((kernel_size * dilation - dilation) / 2)
133
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134
+ dilation=dilation, padding=padding)
135
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136
+ self.in_layers.append(in_layer)
137
+
138
+ # last one is not necessary
139
+ if i < n_layers - 1:
140
+ res_skip_channels = 2 * hidden_channels
141
+ else:
142
+ res_skip_channels = hidden_channels
143
+
144
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146
+ self.res_skip_layers.append(res_skip_layer)
147
+
148
+ def forward(self, x, x_mask, g=None, **kwargs):
149
+ output = torch.zeros_like(x)
150
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
151
+
152
+ if g is not None:
153
+ g = self.cond_layer(g)
154
+
155
+ for i in range(self.n_layers):
156
+ x_in = self.in_layers[i](x)
157
+ if g is not None:
158
+ cond_offset = i * 2 * self.hidden_channels
159
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160
+ else:
161
+ g_l = torch.zeros_like(x_in)
162
+
163
+ acts = commons.fused_add_tanh_sigmoid_multiply(
164
+ x_in,
165
+ g_l,
166
+ n_channels_tensor)
167
+ acts = self.drop(acts)
168
+
169
+ res_skip_acts = self.res_skip_layers[i](acts)
170
+ if i < self.n_layers - 1:
171
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
172
+ x = (x + res_acts) * x_mask
173
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
174
+ else:
175
+ output = output + res_skip_acts
176
+ return output * x_mask
177
+
178
+ def remove_weight_norm(self):
179
+ if self.gin_channels != 0:
180
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
181
+ for l in self.in_layers:
182
+ torch.nn.utils.remove_weight_norm(l)
183
+ for l in self.res_skip_layers:
184
+ torch.nn.utils.remove_weight_norm(l)
185
+
186
+
187
+ class ResBlock1(torch.nn.Module):
188
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
189
+ super(ResBlock1, self).__init__()
190
+ self.convs1 = nn.ModuleList([
191
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
192
+ padding=get_padding(kernel_size, dilation[0]))),
193
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
194
+ padding=get_padding(kernel_size, dilation[1]))),
195
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
196
+ padding=get_padding(kernel_size, dilation[2])))
197
+ ])
198
+ self.convs1.apply(init_weights)
199
+
200
+ self.convs2 = nn.ModuleList([
201
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202
+ padding=get_padding(kernel_size, 1))),
203
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204
+ padding=get_padding(kernel_size, 1))),
205
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206
+ padding=get_padding(kernel_size, 1)))
207
+ ])
208
+ self.convs2.apply(init_weights)
209
+
210
+ def forward(self, x, x_mask=None):
211
+ for c1, c2 in zip(self.convs1, self.convs2):
212
+ xt = F.leaky_relu(x, LRELU_SLOPE)
213
+ if x_mask is not None:
214
+ xt = xt * x_mask
215
+ xt = c1(xt)
216
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
217
+ if x_mask is not None:
218
+ xt = xt * x_mask
219
+ xt = c2(xt)
220
+ x = xt + x
221
+ if x_mask is not None:
222
+ x = x * x_mask
223
+ return x
224
+
225
+ def remove_weight_norm(self):
226
+ for l in self.convs1:
227
+ remove_weight_norm(l)
228
+ for l in self.convs2:
229
+ remove_weight_norm(l)
230
+
231
+
232
+ class ResBlock2(torch.nn.Module):
233
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
234
+ super(ResBlock2, self).__init__()
235
+ self.convs = nn.ModuleList([
236
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
237
+ padding=get_padding(kernel_size, dilation[0]))),
238
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
239
+ padding=get_padding(kernel_size, dilation[1])))
240
+ ])
241
+ self.convs.apply(init_weights)
242
+
243
+ def forward(self, x, x_mask=None):
244
+ for c in self.convs:
245
+ xt = F.leaky_relu(x, LRELU_SLOPE)
246
+ if x_mask is not None:
247
+ xt = xt * x_mask
248
+ xt = c(xt)
249
+ x = xt + x
250
+ if x_mask is not None:
251
+ x = x * x_mask
252
+ return x
253
+
254
+ def remove_weight_norm(self):
255
+ for l in self.convs:
256
+ remove_weight_norm(l)
257
+
258
+
259
+ class Log(nn.Module):
260
+ def forward(self, x, x_mask, reverse=False, **kwargs):
261
+ if not reverse:
262
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263
+ logdet = torch.sum(-y, [1, 2])
264
+ return y, logdet
265
+ else:
266
+ x = torch.exp(x) * x_mask
267
+ return x
268
+
269
+
270
+ class Flip(nn.Module):
271
+ def forward(self, x, *args, reverse=False, **kwargs):
272
+ x = torch.flip(x, [1])
273
+ if not reverse:
274
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275
+ return x, logdet
276
+ else:
277
+ return x
278
+
279
+
280
+ class ElementwiseAffine(nn.Module):
281
+ def __init__(self, channels):
282
+ super().__init__()
283
+ self.channels = channels
284
+ self.m = nn.Parameter(torch.zeros(channels,1))
285
+ self.logs = nn.Parameter(torch.zeros(channels,1))
286
+
287
+ def forward(self, x, x_mask, reverse=False, **kwargs):
288
+ if not reverse:
289
+ y = self.m + torch.exp(self.logs) * x
290
+ y = y * x_mask
291
+ logdet = torch.sum(self.logs * x_mask, [1,2])
292
+ return y, logdet
293
+ else:
294
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
295
+ return x
296
+
297
+
298
+ class ResidualCouplingLayer(nn.Module):
299
+ def __init__(self,
300
+ channels,
301
+ hidden_channels,
302
+ kernel_size,
303
+ dilation_rate,
304
+ n_layers,
305
+ p_dropout=0,
306
+ gin_channels=0,
307
+ mean_only=False):
308
+ assert channels % 2 == 0, "channels should be divisible by 2"
309
+ super().__init__()
310
+ self.channels = channels
311
+ self.hidden_channels = hidden_channels
312
+ self.kernel_size = kernel_size
313
+ self.dilation_rate = dilation_rate
314
+ self.n_layers = n_layers
315
+ self.half_channels = channels // 2
316
+ self.mean_only = mean_only
317
+
318
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321
+ self.post.weight.data.zero_()
322
+ self.post.bias.data.zero_()
323
+
324
+ def forward(self, x, x_mask, g=None, reverse=False):
325
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326
+ h = self.pre(x0) * x_mask
327
+ h = self.enc(h, x_mask, g=g)
328
+ stats = self.post(h) * x_mask
329
+ if not self.mean_only:
330
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
331
+ else:
332
+ m = stats
333
+ logs = torch.zeros_like(m)
334
+
335
+ if not reverse:
336
+ x1 = m + x1 * torch.exp(logs) * x_mask
337
+ x = torch.cat([x0, x1], 1)
338
+ logdet = torch.sum(logs, [1,2])
339
+ return x, logdet
340
+ else:
341
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
342
+ x = torch.cat([x0, x1], 1)
343
+ return x
344
+
345
+
346
+ class ConvFlow(nn.Module):
347
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348
+ super().__init__()
349
+ self.in_channels = in_channels
350
+ self.filter_channels = filter_channels
351
+ self.kernel_size = kernel_size
352
+ self.n_layers = n_layers
353
+ self.num_bins = num_bins
354
+ self.tail_bound = tail_bound
355
+ self.half_channels = in_channels // 2
356
+
357
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360
+ self.proj.weight.data.zero_()
361
+ self.proj.bias.data.zero_()
362
+
363
+ def forward(self, x, x_mask, g=None, reverse=False):
364
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365
+ h = self.pre(x0)
366
+ h = self.convs(h, x_mask, g=g)
367
+ h = self.proj(h) * x_mask
368
+
369
+ b, c, t = x0.shape
370
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371
+
372
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
375
+
376
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377
+ unnormalized_widths,
378
+ unnormalized_heights,
379
+ unnormalized_derivatives,
380
+ inverse=reverse,
381
+ tails='linear',
382
+ tail_bound=self.tail_bound
383
+ )
384
+
385
+ x = torch.cat([x0, x1], 1) * x_mask
386
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
387
+ if not reverse:
388
+ return x, logdet
389
+ else:
390
+ return x
monotonic_align/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from .monotonic_align.core import maximum_path_c
4
+
5
+
6
+ def maximum_path(neg_cent, mask):
7
+ """ Cython optimized version.
8
+ neg_cent: [b, t_t, t_s]
9
+ mask: [b, t_t, t_s]
10
+ """
11
+ device = neg_cent.device
12
+ dtype = neg_cent.dtype
13
+ neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
14
+ path = np.zeros(neg_cent.shape, dtype=np.int32)
15
+
16
+ t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
17
+ t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
18
+ maximum_path_c(path, neg_cent, t_t_max, t_s_max)
19
+ return torch.from_numpy(path).to(device=device, dtype=dtype)
monotonic_align/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (805 Bytes). View file
 
monotonic_align/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (813 Bytes). View file
 
monotonic_align/build/lib.win-amd64-cpython-37/monotonic_align/core.cp37-win_amd64.pyd ADDED
Binary file (125 kB). View file
 
monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.exp ADDED
Binary file (776 Bytes). View file
 
monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.lib ADDED
Binary file (1.94 kB). View file
 
monotonic_align/build/temp.win-amd64-3.7/Release/core.obj ADDED
Binary file (867 kB). View file
 
monotonic_align/build/temp.win-amd64-cpython-37/Release/core.cp37-win_amd64.exp ADDED
Binary file (783 Bytes). View file
 
monotonic_align/build/temp.win-amd64-cpython-37/Release/core.cp37-win_amd64.lib ADDED
Binary file (1.94 kB). View file
 
monotonic_align/build/temp.win-amd64-cpython-37/Release/core.obj ADDED
Binary file (874 kB). View file
 
monotonic_align/core.c ADDED
The diff for this file is too large to render. See raw diff
 
monotonic_align/core.pyx ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cimport cython
2
+ from cython.parallel import prange
3
+
4
+
5
+ @cython.boundscheck(False)
6
+ @cython.wraparound(False)
7
+ cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
8
+ cdef int x
9
+ cdef int y
10
+ cdef float v_prev
11
+ cdef float v_cur
12
+ cdef float tmp
13
+ cdef int index = t_x - 1
14
+
15
+ for y in range(t_y):
16
+ for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
17
+ if x == y:
18
+ v_cur = max_neg_val
19
+ else:
20
+ v_cur = value[y-1, x]
21
+ if x == 0:
22
+ if y == 0:
23
+ v_prev = 0.
24
+ else:
25
+ v_prev = max_neg_val
26
+ else:
27
+ v_prev = value[y-1, x-1]
28
+ value[y, x] += max(v_prev, v_cur)
29
+
30
+ for y in range(t_y - 1, -1, -1):
31
+ path[y, index] = 1
32
+ if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
33
+ index = index - 1
34
+
35
+
36
+ @cython.boundscheck(False)
37
+ @cython.wraparound(False)
38
+ cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
39
+ cdef int b = paths.shape[0]
40
+ cdef int i
41
+ for i in prange(b, nogil=True):
42
+ maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
monotonic_align/monotonic_align/core.cp37-win_amd64.pyd ADDED
Binary file (125 kB). View file
 
monotonic_align/setup.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from distutils.core import setup
2
+ from Cython.Build import cythonize
3
+ import numpy
4
+
5
+ setup(
6
+ name = 'monotonic_align',
7
+ ext_modules = cythonize("core.pyx"),
8
+ include_dirs=[numpy.get_include()]
9
+ )
preprocess.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import text
3
+ from utils import load_filepaths_and_text
4
+
5
+ if __name__ == '__main__':
6
+ parser = argparse.ArgumentParser()
7
+ parser.add_argument("--out_extension", default="cleaned")
8
+ parser.add_argument("--text_index", default=2, type=int)
9
+ parser.add_argument("--filelists", nargs="+", default=["filelists/miyu_train.txt", "filelists/miyu_val.txt"])
10
+ parser.add_argument("--text_cleaners", nargs="+", default=["japanese_cleaners"])
11
+
12
+ args = parser.parse_args()
13
+
14
+
15
+ for filelist in args.filelists:
16
+ print("START:", filelist)
17
+ filepaths_and_text = load_filepaths_and_text(filelist)
18
+ for i in range(len(filepaths_and_text)):
19
+ original_text = filepaths_and_text[i][args.text_index]
20
+ cleaned_text = text._clean_text(original_text, args.text_cleaners)
21
+ filepaths_and_text[i][args.text_index] = cleaned_text
22
+
23
+ new_filelist = filelist + "." + args.out_extension
24
+ with open(new_filelist, "w", encoding="utf-8") as f:
25
+ f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cython
2
+ librosa==0.8.0
3
+ matplotlib
4
+ numpy
5
+ scipy
6
+ tensorboard
7
+ torch
8
+ torchvision
9
+ unidecode
10
+ pyopenjtalk
11
+ protobuf
12
+ tqdm
run.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import IPython.display as ipd
3
+
4
+ import os
5
+ import json
6
+ import math
7
+ import torch
8
+
9
+
10
+ import commons
11
+ import utils
12
+ from models import SynthesizerTrn
13
+ from text.symbols import symbols
14
+ from text import text_to_sequence
15
+
16
+ from scipy.io.wavfile import write
17
+
18
+
19
+ def get_text(text, hps):
20
+ text_norm = text_to_sequence(text, hps.data.text_cleaners)
21
+ if hps.data.add_blank:
22
+ text_norm = commons.intersperse(text_norm, 0)
23
+ text_norm = torch.LongTensor(text_norm)
24
+ return text_norm
25
+
26
+ config_path = "C:\\Users\\zelda\\Documents\\GitHub\\vits-finetuning\\models\\kayoko\\config.json"
27
+ model_path = "C:\\Users\\zelda\\Documents\\GitHub\\vits-finetuning\\models\\kayoko\\hayoko.pth"
28
+ hps = utils.get_hparams_from_file(config_path)
29
+ net_g = SynthesizerTrn(
30
+ len(hps.symbols),
31
+ hps.data.filter_length // 2 + 1,
32
+ hps.train.segment_size // hps.data.hop_length,
33
+ n_speakers=hps.data.n_speakers,
34
+ **hps.model).cuda()
35
+ model = net_g.eval()
36
+ pythomodel = utils.load_checkpoint(model_path, net_g, None)
37
+
38
+ speaker_id = 10 #@param {type:"number"}
39
+ text = "\u306F\u3041... \u843D\u3061\u7740\u3044\u3066\u304F\u308C\u306A\u3044\u304B\uFF1F"
40
+ noise_scale=0.6 #@param {type:"number"}
41
+ noise_scale_w=0.668 #@param {type:"number"}
42
+ length_scale=1.0 #@param {type:"number"}
43
+ stn_tst = get_text(text, hps)
44
+ with torch.no_grad():
45
+ x_tst = stn_tst.cuda().unsqueeze(0)
46
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
47
+ sid = torch.LongTensor([speaker_id]).cuda()
48
+ audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
49
+
50
+ ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))