Spaces:
Runtime error
Runtime error
initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +21 -0
- README.md +2 -2
- __pycache__/attentions.cpython-37.pyc +0 -0
- __pycache__/commons.cpython-37.pyc +0 -0
- __pycache__/models.cpython-37.pyc +0 -0
- __pycache__/modules.cpython-37.pyc +0 -0
- __pycache__/transforms.cpython-37.pyc +0 -0
- __pycache__/utils.cpython-37.pyc +0 -0
- app.py +193 -0
- attentions.py +303 -0
- commons.py +161 -0
- configs/config-single-speaker.json +54 -0
- configs/config.json +55 -0
- data_utils.py +394 -0
- inference.ipynb +253 -0
- losses.py +61 -0
- mel_processing.py +112 -0
- models.py +534 -0
- models/aru/aru.png +0 -0
- models/aru/aru.pth +3 -0
- models/config.json +948 -0
- models/haruka/haruka.png +0 -0
- models/haruka/haruka.pth +3 -0
- models/hifumi/hifumi.png +0 -0
- models/hifumi/hifumi.pth +3 -0
- models/kayoko/kayoko.png +0 -0
- models/kayoko/kayoko.pth +3 -0
- models/koharu/koharu.png +0 -0
- models/koharu/koharu.pth +3 -0
- models/metadata.json +50 -0
- models/mutsuki/mutsuki.png +0 -0
- models/mutsuki/mutsuki.pth +3 -0
- modules.py +390 -0
- monotonic_align/__init__.py +19 -0
- monotonic_align/__pycache__/__init__.cpython-37.pyc +0 -0
- monotonic_align/__pycache__/__init__.cpython-38.pyc +0 -0
- monotonic_align/build/lib.win-amd64-cpython-37/monotonic_align/core.cp37-win_amd64.pyd +0 -0
- monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.exp +0 -0
- monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.lib +0 -0
- monotonic_align/build/temp.win-amd64-3.7/Release/core.obj +0 -0
- monotonic_align/build/temp.win-amd64-cpython-37/Release/core.cp37-win_amd64.exp +0 -0
- monotonic_align/build/temp.win-amd64-cpython-37/Release/core.cp37-win_amd64.lib +0 -0
- monotonic_align/build/temp.win-amd64-cpython-37/Release/core.obj +0 -0
- monotonic_align/core.c +0 -0
- monotonic_align/core.pyx +42 -0
- monotonic_align/monotonic_align/core.cp37-win_amd64.pyd +0 -0
- monotonic_align/setup.py +9 -0
- preprocess.py +25 -0
- requirements.txt +12 -0
- run.py +50 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Jaehyeon Kim
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Vits For Ba
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.35.2
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Vits For Ba
|
3 |
+
emoji: 😇
|
4 |
colorFrom: blue
|
5 |
+
colorTo: white
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.35.2
|
8 |
app_file: app.py
|
__pycache__/attentions.cpython-37.pyc
ADDED
Binary file (9.68 kB). View file
|
|
__pycache__/commons.cpython-37.pyc
ADDED
Binary file (5.82 kB). View file
|
|
__pycache__/models.cpython-37.pyc
ADDED
Binary file (15.4 kB). View file
|
|
__pycache__/modules.cpython-37.pyc
ADDED
Binary file (11.7 kB). View file
|
|
__pycache__/transforms.cpython-37.pyc
ADDED
Binary file (3.87 kB). View file
|
|
__pycache__/utils.cpython-37.pyc
ADDED
Binary file (8.31 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import json
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
# get arguments
|
7 |
+
parser = argparse.ArgumentParser(description="VITS model for Blue Archive characters")
|
8 |
+
parser.add_argument('--device', type=str, default='cpu', choices=["cpu","cuda"], help="inference method (default: cpu)")
|
9 |
+
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
|
10 |
+
parser.add_argument("--queue", type=int, default=1, help="max number of concurrent workers for the queue (default: 1, set to 0 to disable)")
|
11 |
+
parser.add_argument('--api', action="store_true", default=False, help="enable REST routes (allows to skip queue)")
|
12 |
+
parser.add_argument("--limit", type=int, default=100, help="prompt words limit (default: 100, set to 0 to disable)")
|
13 |
+
args = parser.parse_args()
|
14 |
+
#limit_text = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import utils
|
18 |
+
import commons
|
19 |
+
from models import SynthesizerTrn
|
20 |
+
from text import text_to_sequence
|
21 |
+
|
22 |
+
import gradio as gr
|
23 |
+
|
24 |
+
metadata_path = "./models/metadata.json"
|
25 |
+
config_path = "./models/config.json"
|
26 |
+
default_sid = 10
|
27 |
+
|
28 |
+
# load each model's definition
|
29 |
+
with open(metadata_path, "r", encoding="utf-8") as f:
|
30 |
+
metadata = json.load(f)
|
31 |
+
|
32 |
+
##################### MODEL LOADING #####################
|
33 |
+
# loads one model and returns a container with all references to the model
|
34 |
+
device = torch.device(args.device)
|
35 |
+
def load_checkpoint(model_path):
|
36 |
+
hps = utils.get_hparams_from_file(config_path)
|
37 |
+
net_g = SynthesizerTrn(
|
38 |
+
len(hps.symbols),
|
39 |
+
hps.data.filter_length // 2 + 1,
|
40 |
+
hps.train.segment_size // hps.data.hop_length,
|
41 |
+
n_speakers=hps.data.n_speakers,
|
42 |
+
**hps.model)
|
43 |
+
model = net_g.eval().to(device)
|
44 |
+
pythomodel = utils.load_checkpoint(model_path, net_g, None)
|
45 |
+
|
46 |
+
return {"hps": hps, "net_g": net_g}
|
47 |
+
|
48 |
+
# loads all models on system memory and returns a dict with all references
|
49 |
+
def load_models():
|
50 |
+
models = {}
|
51 |
+
for name, model_info in metadata.items():
|
52 |
+
model = load_checkpoint(model_info["model"])
|
53 |
+
models[name] = model
|
54 |
+
|
55 |
+
return models
|
56 |
+
|
57 |
+
models = load_models()
|
58 |
+
|
59 |
+
##################### INFERENCE #####################
|
60 |
+
def get_text(text, hps):
|
61 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
62 |
+
if hps.data.add_blank:
|
63 |
+
text_norm = commons.intersperse(text_norm, 0)
|
64 |
+
text_norm = torch.LongTensor(text_norm)
|
65 |
+
return text_norm
|
66 |
+
|
67 |
+
def prepare_text(text):
|
68 |
+
prepared_text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
|
69 |
+
if args.limit > 0:
|
70 |
+
text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
|
71 |
+
max_len = args.limit
|
72 |
+
if text_len > max_len:
|
73 |
+
return None
|
74 |
+
return prepared_text
|
75 |
+
|
76 |
+
# inferes a model
|
77 |
+
def speak(selected_index, text, noise_scale, noise_scale_w, length_scale, speaker_id):
|
78 |
+
# get selected model
|
79 |
+
model = list(models.items())[selected_index][1]
|
80 |
+
# clean and truncate text
|
81 |
+
text = prepare_text(text)
|
82 |
+
if text is None:
|
83 |
+
return ["Error: text is too long", None]
|
84 |
+
|
85 |
+
stn_tst = get_text(text, model["hps"])
|
86 |
+
with torch.no_grad():
|
87 |
+
x_tst = stn_tst.unsqueeze(0).to(device)
|
88 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
|
89 |
+
sid = torch.LongTensor([speaker_id]).to(device)
|
90 |
+
audio = model["net_g"].infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
|
91 |
+
|
92 |
+
return ["Success", (22050, audio)]
|
93 |
+
|
94 |
+
##################### GRADIO UI #####################
|
95 |
+
# javascript function for creating a download link, reads the audio file from the DOM and returns it with the prompt as the filename
|
96 |
+
download_audio_js = """
|
97 |
+
() =>{{
|
98 |
+
let root = document.querySelector("body > gradio-app");
|
99 |
+
if (root.shadowRoot != null)
|
100 |
+
root = root.shadowRoot;
|
101 |
+
let audio = root.querySelector("#output-audio").querySelector("audio");
|
102 |
+
let text = root.querySelector("#input-text").querySelector("textarea");
|
103 |
+
if (audio == undefined)
|
104 |
+
return;
|
105 |
+
text = text.value;
|
106 |
+
if (text == undefined)
|
107 |
+
text = Math.floor(Math.random()*100000000);
|
108 |
+
audio = audio.src;
|
109 |
+
let oA = document.createElement("a");
|
110 |
+
oA.download = text.substr(0, 20)+'.wav';
|
111 |
+
oA.href = audio;
|
112 |
+
document.body.appendChild(oA);
|
113 |
+
oA.click();
|
114 |
+
oA.remove();
|
115 |
+
}}
|
116 |
+
"""
|
117 |
+
def make_gradio_ui():
|
118 |
+
with gr.Blocks(css="#avatar {width:auto;height:200px;}") as demo:
|
119 |
+
# make title
|
120 |
+
gr.Markdown(
|
121 |
+
"""
|
122 |
+
# <center> VITS for Blue Archive Characters
|
123 |
+
## <center> This is for educational purposes, please do not generate harmful or inappropriate content\n
|
124 |
+
[![HitCount](https://hits.dwyl.com/tovaru/vits-for-ba.svg?style=flat-square&show=unique)](http://hits.dwyl.com/tovaru/vits-for-ba)\n
|
125 |
+
This is based on [zomehwh's implementation](https://huggingface.co/spaces/zomehwh/vits-models), please visit their space if you want to finetune your own models!
|
126 |
+
"""
|
127 |
+
)
|
128 |
+
|
129 |
+
first = list(metadata.items())[0][1]
|
130 |
+
with gr.Row():
|
131 |
+
# setup column
|
132 |
+
with gr.Column():
|
133 |
+
# set text input field
|
134 |
+
text = gr.Textbox(
|
135 |
+
lines=5,
|
136 |
+
interactive=True,
|
137 |
+
label=f"Text ({args.limit} words limit)" if args.limit > 0 else "Text",
|
138 |
+
value=first["example_text"],
|
139 |
+
elem_id="input-text")
|
140 |
+
|
141 |
+
# button for loading example texts
|
142 |
+
example_btn = gr.Button("Example", size="sm")
|
143 |
+
|
144 |
+
# character selector
|
145 |
+
names = []
|
146 |
+
for _, model in metadata.items():
|
147 |
+
names.append(model["name_en"])
|
148 |
+
character = gr.Radio(label="Character", choices=names, value=names[0], type="index")
|
149 |
+
|
150 |
+
# inference parameters
|
151 |
+
with gr.Row():
|
152 |
+
ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
|
153 |
+
nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
|
154 |
+
with gr.Row():
|
155 |
+
ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1, interactive=True)
|
156 |
+
sid = gr.Number(value=default_sid, label="Speaker ID (increase or decrease to change the intonation)")
|
157 |
+
|
158 |
+
# generate button
|
159 |
+
generate_btn = gr.Button(value="Generate", variant="primary")
|
160 |
+
|
161 |
+
# results column
|
162 |
+
with gr.Column():
|
163 |
+
avatar = gr.Image(first["avatar"], type="pil", elem_id="avatar")
|
164 |
+
output_message = gr.Textbox(label="Result Message")
|
165 |
+
output_audio = gr.Audio(label="Output Audio", interactive=False, elem_id="output-audio")
|
166 |
+
download_btn = gr.Button("Download Audio")
|
167 |
+
|
168 |
+
# set character selection updates
|
169 |
+
def update_selection(index):
|
170 |
+
avatars = list(metadata.items())
|
171 |
+
new_avatar = avatars[index][1]["avatar"]
|
172 |
+
return gr.Image.update(value=new_avatar)
|
173 |
+
|
174 |
+
character.change(update_selection, character, avatar)
|
175 |
+
|
176 |
+
# set generate button action
|
177 |
+
generate_btn.click(fn=speak, inputs=[character, text, ns, nsw, ls, sid], outputs=[output_message, output_audio], api_name="generate")
|
178 |
+
|
179 |
+
# set download butto naction
|
180 |
+
download_btn.click(None, [], [], _js=download_audio_js)
|
181 |
+
|
182 |
+
def load_example(index):
|
183 |
+
example = list(metadata.items())[index][1]["example_text"]
|
184 |
+
return example
|
185 |
+
example_btn.click(fn=load_example, inputs=[character], outputs=[text])
|
186 |
+
|
187 |
+
return demo
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
demo = make_gradio_ui()
|
191 |
+
if args.queue > 0:
|
192 |
+
demo.queue(concurrency_count=args.queue, api_open=args.api)
|
193 |
+
demo.launch(share=args.share, show_api=args.api)
|
attentions.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
import commons
|
9 |
+
import modules
|
10 |
+
from modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
15 |
+
super().__init__()
|
16 |
+
self.hidden_channels = hidden_channels
|
17 |
+
self.filter_channels = filter_channels
|
18 |
+
self.n_heads = n_heads
|
19 |
+
self.n_layers = n_layers
|
20 |
+
self.kernel_size = kernel_size
|
21 |
+
self.p_dropout = p_dropout
|
22 |
+
self.window_size = window_size
|
23 |
+
|
24 |
+
self.drop = nn.Dropout(p_dropout)
|
25 |
+
self.attn_layers = nn.ModuleList()
|
26 |
+
self.norm_layers_1 = nn.ModuleList()
|
27 |
+
self.ffn_layers = nn.ModuleList()
|
28 |
+
self.norm_layers_2 = nn.ModuleList()
|
29 |
+
for i in range(self.n_layers):
|
30 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
31 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
32 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
33 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
34 |
+
|
35 |
+
def forward(self, x, x_mask):
|
36 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
37 |
+
x = x * x_mask
|
38 |
+
for i in range(self.n_layers):
|
39 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
40 |
+
y = self.drop(y)
|
41 |
+
x = self.norm_layers_1[i](x + y)
|
42 |
+
|
43 |
+
y = self.ffn_layers[i](x, x_mask)
|
44 |
+
y = self.drop(y)
|
45 |
+
x = self.norm_layers_2[i](x + y)
|
46 |
+
x = x * x_mask
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class Decoder(nn.Module):
|
51 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
52 |
+
super().__init__()
|
53 |
+
self.hidden_channels = hidden_channels
|
54 |
+
self.filter_channels = filter_channels
|
55 |
+
self.n_heads = n_heads
|
56 |
+
self.n_layers = n_layers
|
57 |
+
self.kernel_size = kernel_size
|
58 |
+
self.p_dropout = p_dropout
|
59 |
+
self.proximal_bias = proximal_bias
|
60 |
+
self.proximal_init = proximal_init
|
61 |
+
|
62 |
+
self.drop = nn.Dropout(p_dropout)
|
63 |
+
self.self_attn_layers = nn.ModuleList()
|
64 |
+
self.norm_layers_0 = nn.ModuleList()
|
65 |
+
self.encdec_attn_layers = nn.ModuleList()
|
66 |
+
self.norm_layers_1 = nn.ModuleList()
|
67 |
+
self.ffn_layers = nn.ModuleList()
|
68 |
+
self.norm_layers_2 = nn.ModuleList()
|
69 |
+
for i in range(self.n_layers):
|
70 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
71 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
72 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
73 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
74 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
75 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
76 |
+
|
77 |
+
def forward(self, x, x_mask, h, h_mask):
|
78 |
+
"""
|
79 |
+
x: decoder input
|
80 |
+
h: encoder output
|
81 |
+
"""
|
82 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
83 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
84 |
+
x = x * x_mask
|
85 |
+
for i in range(self.n_layers):
|
86 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
87 |
+
y = self.drop(y)
|
88 |
+
x = self.norm_layers_0[i](x + y)
|
89 |
+
|
90 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
91 |
+
y = self.drop(y)
|
92 |
+
x = self.norm_layers_1[i](x + y)
|
93 |
+
|
94 |
+
y = self.ffn_layers[i](x, x_mask)
|
95 |
+
y = self.drop(y)
|
96 |
+
x = self.norm_layers_2[i](x + y)
|
97 |
+
x = x * x_mask
|
98 |
+
return x
|
99 |
+
|
100 |
+
|
101 |
+
class MultiHeadAttention(nn.Module):
|
102 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
103 |
+
super().__init__()
|
104 |
+
assert channels % n_heads == 0
|
105 |
+
|
106 |
+
self.channels = channels
|
107 |
+
self.out_channels = out_channels
|
108 |
+
self.n_heads = n_heads
|
109 |
+
self.p_dropout = p_dropout
|
110 |
+
self.window_size = window_size
|
111 |
+
self.heads_share = heads_share
|
112 |
+
self.block_length = block_length
|
113 |
+
self.proximal_bias = proximal_bias
|
114 |
+
self.proximal_init = proximal_init
|
115 |
+
self.attn = None
|
116 |
+
|
117 |
+
self.k_channels = channels // n_heads
|
118 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
119 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
120 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
121 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
122 |
+
self.drop = nn.Dropout(p_dropout)
|
123 |
+
|
124 |
+
if window_size is not None:
|
125 |
+
n_heads_rel = 1 if heads_share else n_heads
|
126 |
+
rel_stddev = self.k_channels**-0.5
|
127 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
128 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
129 |
+
|
130 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
131 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
132 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
133 |
+
if proximal_init:
|
134 |
+
with torch.no_grad():
|
135 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
136 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
137 |
+
|
138 |
+
def forward(self, x, c, attn_mask=None):
|
139 |
+
q = self.conv_q(x)
|
140 |
+
k = self.conv_k(c)
|
141 |
+
v = self.conv_v(c)
|
142 |
+
|
143 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
144 |
+
|
145 |
+
x = self.conv_o(x)
|
146 |
+
return x
|
147 |
+
|
148 |
+
def attention(self, query, key, value, mask=None):
|
149 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
150 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
151 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
152 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
153 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
154 |
+
|
155 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
156 |
+
if self.window_size is not None:
|
157 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
158 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
159 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
160 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
161 |
+
scores = scores + scores_local
|
162 |
+
if self.proximal_bias:
|
163 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
164 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
165 |
+
if mask is not None:
|
166 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
167 |
+
if self.block_length is not None:
|
168 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
169 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
170 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
171 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
172 |
+
p_attn = self.drop(p_attn)
|
173 |
+
output = torch.matmul(p_attn, value)
|
174 |
+
if self.window_size is not None:
|
175 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
176 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
177 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
178 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
179 |
+
return output, p_attn
|
180 |
+
|
181 |
+
def _matmul_with_relative_values(self, x, y):
|
182 |
+
"""
|
183 |
+
x: [b, h, l, m]
|
184 |
+
y: [h or 1, m, d]
|
185 |
+
ret: [b, h, l, d]
|
186 |
+
"""
|
187 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
188 |
+
return ret
|
189 |
+
|
190 |
+
def _matmul_with_relative_keys(self, x, y):
|
191 |
+
"""
|
192 |
+
x: [b, h, l, d]
|
193 |
+
y: [h or 1, m, d]
|
194 |
+
ret: [b, h, l, m]
|
195 |
+
"""
|
196 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
197 |
+
return ret
|
198 |
+
|
199 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
200 |
+
max_relative_position = 2 * self.window_size + 1
|
201 |
+
# Pad first before slice to avoid using cond ops.
|
202 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
203 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
204 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
205 |
+
if pad_length > 0:
|
206 |
+
padded_relative_embeddings = F.pad(
|
207 |
+
relative_embeddings,
|
208 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
209 |
+
else:
|
210 |
+
padded_relative_embeddings = relative_embeddings
|
211 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
212 |
+
return used_relative_embeddings
|
213 |
+
|
214 |
+
def _relative_position_to_absolute_position(self, x):
|
215 |
+
"""
|
216 |
+
x: [b, h, l, 2*l-1]
|
217 |
+
ret: [b, h, l, l]
|
218 |
+
"""
|
219 |
+
batch, heads, length, _ = x.size()
|
220 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
221 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
222 |
+
|
223 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
224 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
225 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
226 |
+
|
227 |
+
# Reshape and slice out the padded elements.
|
228 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
229 |
+
return x_final
|
230 |
+
|
231 |
+
def _absolute_position_to_relative_position(self, x):
|
232 |
+
"""
|
233 |
+
x: [b, h, l, l]
|
234 |
+
ret: [b, h, l, 2*l-1]
|
235 |
+
"""
|
236 |
+
batch, heads, length, _ = x.size()
|
237 |
+
# padd along column
|
238 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
239 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
240 |
+
# add 0's in the beginning that will skew the elements after reshape
|
241 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
242 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
243 |
+
return x_final
|
244 |
+
|
245 |
+
def _attention_bias_proximal(self, length):
|
246 |
+
"""Bias for self-attention to encourage attention to close positions.
|
247 |
+
Args:
|
248 |
+
length: an integer scalar.
|
249 |
+
Returns:
|
250 |
+
a Tensor with shape [1, 1, length, length]
|
251 |
+
"""
|
252 |
+
r = torch.arange(length, dtype=torch.float32)
|
253 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
254 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
255 |
+
|
256 |
+
|
257 |
+
class FFN(nn.Module):
|
258 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
259 |
+
super().__init__()
|
260 |
+
self.in_channels = in_channels
|
261 |
+
self.out_channels = out_channels
|
262 |
+
self.filter_channels = filter_channels
|
263 |
+
self.kernel_size = kernel_size
|
264 |
+
self.p_dropout = p_dropout
|
265 |
+
self.activation = activation
|
266 |
+
self.causal = causal
|
267 |
+
|
268 |
+
if causal:
|
269 |
+
self.padding = self._causal_padding
|
270 |
+
else:
|
271 |
+
self.padding = self._same_padding
|
272 |
+
|
273 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
274 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
275 |
+
self.drop = nn.Dropout(p_dropout)
|
276 |
+
|
277 |
+
def forward(self, x, x_mask):
|
278 |
+
x = self.conv_1(self.padding(x * x_mask))
|
279 |
+
if self.activation == "gelu":
|
280 |
+
x = x * torch.sigmoid(1.702 * x)
|
281 |
+
else:
|
282 |
+
x = torch.relu(x)
|
283 |
+
x = self.drop(x)
|
284 |
+
x = self.conv_2(self.padding(x * x_mask))
|
285 |
+
return x * x_mask
|
286 |
+
|
287 |
+
def _causal_padding(self, x):
|
288 |
+
if self.kernel_size == 1:
|
289 |
+
return x
|
290 |
+
pad_l = self.kernel_size - 1
|
291 |
+
pad_r = 0
|
292 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
293 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
294 |
+
return x
|
295 |
+
|
296 |
+
def _same_padding(self, x):
|
297 |
+
if self.kernel_size == 1:
|
298 |
+
return x
|
299 |
+
pad_l = (self.kernel_size - 1) // 2
|
300 |
+
pad_r = self.kernel_size // 2
|
301 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
302 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
303 |
+
return x
|
commons.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
9 |
+
classname = m.__class__.__name__
|
10 |
+
if classname.find("Conv") != -1:
|
11 |
+
m.weight.data.normal_(mean, std)
|
12 |
+
|
13 |
+
|
14 |
+
def get_padding(kernel_size, dilation=1):
|
15 |
+
return int((kernel_size*dilation - dilation)/2)
|
16 |
+
|
17 |
+
|
18 |
+
def convert_pad_shape(pad_shape):
|
19 |
+
l = pad_shape[::-1]
|
20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
21 |
+
return pad_shape
|
22 |
+
|
23 |
+
|
24 |
+
def intersperse(lst, item):
|
25 |
+
result = [item] * (len(lst) * 2 + 1)
|
26 |
+
result[1::2] = lst
|
27 |
+
return result
|
28 |
+
|
29 |
+
|
30 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
31 |
+
"""KL(P||Q)"""
|
32 |
+
kl = (logs_q - logs_p) - 0.5
|
33 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
54 |
+
return ret
|
55 |
+
|
56 |
+
|
57 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
58 |
+
b, d, t = x.size()
|
59 |
+
if x_lengths is None:
|
60 |
+
x_lengths = t
|
61 |
+
ids_str_max = x_lengths - segment_size + 1
|
62 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(
|
68 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
69 |
+
position = torch.arange(length, dtype=torch.float)
|
70 |
+
num_timescales = channels // 2
|
71 |
+
log_timescale_increment = (
|
72 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
73 |
+
(num_timescales - 1))
|
74 |
+
inv_timescales = min_timescale * torch.exp(
|
75 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
76 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
77 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
78 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
79 |
+
signal = signal.view(1, channels, length)
|
80 |
+
return signal
|
81 |
+
|
82 |
+
|
83 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
84 |
+
b, channels, length = x.size()
|
85 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
86 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
87 |
+
|
88 |
+
|
89 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
90 |
+
b, channels, length = x.size()
|
91 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
92 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
93 |
+
|
94 |
+
|
95 |
+
def subsequent_mask(length):
|
96 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
97 |
+
return mask
|
98 |
+
|
99 |
+
|
100 |
+
@torch.jit.script
|
101 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
102 |
+
n_channels_int = n_channels[0]
|
103 |
+
in_act = input_a + input_b
|
104 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
105 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
106 |
+
acts = t_act * s_act
|
107 |
+
return acts
|
108 |
+
|
109 |
+
|
110 |
+
def convert_pad_shape(pad_shape):
|
111 |
+
l = pad_shape[::-1]
|
112 |
+
pad_shape = [item for sublist in l for item in sublist]
|
113 |
+
return pad_shape
|
114 |
+
|
115 |
+
|
116 |
+
def shift_1d(x):
|
117 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
def sequence_mask(length, max_length=None):
|
122 |
+
if max_length is None:
|
123 |
+
max_length = length.max()
|
124 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
125 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
126 |
+
|
127 |
+
|
128 |
+
def generate_path(duration, mask):
|
129 |
+
"""
|
130 |
+
duration: [b, 1, t_x]
|
131 |
+
mask: [b, 1, t_y, t_x]
|
132 |
+
"""
|
133 |
+
device = duration.device
|
134 |
+
|
135 |
+
b, _, t_y, t_x = mask.shape
|
136 |
+
cum_duration = torch.cumsum(duration, -1)
|
137 |
+
|
138 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
139 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
140 |
+
path = path.view(b, t_x, t_y)
|
141 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
142 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
143 |
+
return path
|
144 |
+
|
145 |
+
|
146 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
147 |
+
if isinstance(parameters, torch.Tensor):
|
148 |
+
parameters = [parameters]
|
149 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
150 |
+
norm_type = float(norm_type)
|
151 |
+
if clip_value is not None:
|
152 |
+
clip_value = float(clip_value)
|
153 |
+
|
154 |
+
total_norm = 0
|
155 |
+
for p in parameters:
|
156 |
+
param_norm = p.grad.data.norm(norm_type)
|
157 |
+
total_norm += param_norm.item() ** norm_type
|
158 |
+
if clip_value is not None:
|
159 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
160 |
+
total_norm = total_norm ** (1. / norm_type)
|
161 |
+
return total_norm
|
configs/config-single-speaker.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-5,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 16,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"filelists/takina_train.txt.cleaned",
|
21 |
+
"validation_files":"filelists/takina_val.txt.cleaned",
|
22 |
+
"text_cleaners":["japanese_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 0,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false
|
51 |
+
},
|
52 |
+
"speakers": ["takina"],
|
53 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
54 |
+
}
|
configs/config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 16,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"filelists/miyu_train.txt.cleaned",
|
21 |
+
"validation_files":"filelists/miyu_val.txt.cleaned",
|
22 |
+
"text_cleaners":["japanese_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 804,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"speakers": ["\u7279\u522b\u5468", "\u65e0\u58f0\u94c3\u9e7f", "\u4e1c\u6d77\u5e1d\u7687\uff08\u5e1d\u5b9d\uff0c\u5e1d\u738b\uff09", "\u4e38\u5584\u65af\u57fa", "\u5bcc\u58eb\u5947\u8ff9", "\u5c0f\u6817\u5e3d", "\u9ec4\u91d1\u8239", "\u4f0f\u7279\u52a0", "\u5927\u548c\u8d64\u9aa5", "\u5927\u6811\u5feb\u8f66", "\u8349\u4e0a\u98de", "\u83f1\u4e9a\u9a6c\u900a", "\u76ee\u767d\u9ea6\u6606", "\u795e\u9e70", "\u597d\u6b4c\u5267", "\u6210\u7530\u767d\u4ec1", "\u9c81\u9053\u592b\u8c61\u5f81\uff08\u7687\u5e1d\uff09", "\u6c14\u69fd", "\u7231\u4e3d\u6570\u7801", "\u661f\u4e91\u5929\u7a7a", "\u7389\u85fb\u5341\u5b57", "\u7f8e\u5999\u59ff\u52bf", "\u7435\u7436\u6668\u5149", "\u6469\u8036\u91cd\u70ae", "\u66fc\u57ce\u8336\u5ea7", "\u7f8e\u6d66\u6ce2\u65c1", "\u76ee\u767d\u8d56\u6069", "\u83f1\u66d9", "\u96ea\u4e2d\u7f8e\u4eba", "\u7c73\u6d74", "\u827e\u5c3c\u65af\u98ce\u795e", "\u7231\u4e3d\u901f\u5b50\uff08\u7231\u4e3d\u5feb\u5b50\uff09", "\u7231\u6155\u7ec7\u59ec", "\u7a3b\u8377\u4e00", "\u80dc\u5229\u5956\u5238", "\u7a7a\u4e2d\u795e\u5bab", "\u8363\u8fdb\u95ea\u8000", "\u771f\u673a\u4f36", "\u5ddd\u4e0a\u516c\u4e3b", "\u9ec4\u91d1\u57ce\uff08\u9ec4\u91d1\u57ce\u5e02\uff09", "\u6a31\u82b1\u8fdb\u738b", "\u91c7\u73e0", "\u65b0\u5149\u98ce", "\u4e1c\u5546\u53d8\u9769", "\u8d85\u7ea7\u5c0f\u6d77\u6e7e", "\u9192\u76ee\u98de\u9e70\uff08\u5bc4\u5bc4\u5b50\uff09", "\u8352\u6f20\u82f1\u96c4", "\u4e1c\u701b\u4f50\u6566", "\u4e2d\u5c71\u5e86\u5178", "\u6210\u7530\u5927\u8fdb", "\u897f\u91ce\u82b1", "\u6625\u4e3d\uff08\u4e4c\u62c9\u62c9\uff09", "\u9752\u7af9\u56de\u5fc6", "\u5fae\u5149\u98de\u9a79", "\u7f8e\u4e3d\u5468\u65e5", "\u5f85\u517c\u798f\u6765", "mr cb\uff08cb\u5148\u751f\uff09", "\u540d\u5c06\u6012\u6d9b\uff08\u540d\u5c06\u6237\u4ec1\uff09", "\u76ee\u767d\u591a\u4f2f", "\u4f18\u79c0\u7d20\u8d28", "\u5e1d\u738b\u5149\u8f89", "\u5f85\u517c\u8bd7\u6b4c\u5267", "\u751f\u91ce\u72c4\u675c\u65af", "\u76ee\u767d\u5584\u4fe1", "\u5927\u62d3\u592a\u9633\u795e", "\u53cc\u6da1\u8f6e\uff08\u4e24\u7acb\u76f4\uff0c\u4e24\u55b7\u5c04\uff0c\u4e8c\u9505\u5934\uff0c\u9006\u55b7\u5c04\uff09", "\u91cc\u89c1\u5149\u94bb\uff08\u8428\u6258\u8bfa\u91d1\u521a\u77f3\uff09", "\u5317\u90e8\u7384\u9a79", "\u6a31\u82b1\u5343\u4ee3\u738b", "\u5929\u72fc\u661f\u8c61\u5f81", "\u76ee\u767d\u963f\u5c14\u4e39", "\u516b\u91cd\u65e0\u654c", "\u9e64\u4e38\u521a\u5fd7", "\u76ee\u767d\u5149\u660e", "\u6210\u7530\u62dc\u4ec1\uff08\u6210\u7530\u8def\uff09", "\u4e5f\u6587\u6444\u8f89", "\u5c0f\u6797\u5386\u5947", "\u5317\u6e2f\u706b\u5c71", "\u5947\u9510\u9a8f", "\u82e6\u6da9\u7cd6\u971c", "\u5c0f\u5c0f\u8695\u8327", "\u9a8f\u5ddd\u624b\u7eb2\uff08\u7eff\u5e3d\u6076\u9b54\uff09", "\u79cb\u5ddd\u5f25\u751f\uff08\u5c0f\u5c0f\u7406\u4e8b\u957f\uff09", "\u4e59\u540d\u53f2\u60a6\u5b50\uff08\u4e59\u540d\u8bb0\u8005\uff09", "\u6850\u751f\u9662\u8475", "\u5b89\u5fc3\u6cfd\u523a\u523a\u7f8e", "\u6a2b\u672c\u7406\u5b50", "\u795e\u91cc\u7eeb\u534e\uff08\u9f9f\u9f9f\uff09", "\u7434", "\u7a7a\uff08\u7a7a\u54e5\uff09", "\u4e3d\u838e", "\u8367\uff08\u8367\u59b9\uff09", "\u82ad\u82ad\u62c9", "\u51ef\u4e9a", "\u8fea\u5362\u514b", "\u96f7\u6cfd", "\u5b89\u67cf", "\u6e29\u8fea", "\u9999\u83f1", "\u5317\u6597", "\u884c\u79cb", "\u9b48", "\u51dd\u5149", "\u53ef\u8389", "\u949f\u79bb", "\u83f2\u8c22\u5c14\uff08\u7687\u5973\uff09", "\u73ed\u5c3c\u7279", "\u8fbe\u8fbe\u5229\u4e9a\uff08\u516c\u5b50\uff09", "\u8bfa\u827e\u5c14\uff08\u5973\u4ec6\uff09", "\u4e03\u4e03", "\u91cd\u4e91", "\u7518\u96e8\uff08\u6930\u7f8a\uff09", "\u963f\u8d1d\u591a", "\u8fea\u5965\u5a1c\uff08\u732b\u732b\uff09", "\u83ab\u5a1c", "\u523b\u6674", "\u7802\u7cd6", "\u8f9b\u7131", "\u7f57\u838e\u8389\u4e9a", "\u80e1\u6843", "\u67ab\u539f\u4e07\u53f6\uff08\u4e07\u53f6\uff09", "\u70df\u7eef", "\u5bb5\u5bab", "\u6258\u9a6c", "\u4f18\u83c8", "\u96f7\u7535\u5c06\u519b\uff08\u96f7\u795e\uff09", "\u65e9\u67da", "\u73ca\u745a\u5bab\u5fc3\u6d77\uff08\u5fc3\u6d77\uff0c\u6263\u6263\u7c73\uff09", "\u4e94\u90ce", "\u4e5d\u6761\u88df\u7f57", "\u8352\u6cf7\u4e00\u6597\uff08\u4e00\u6597\uff09", "\u57c3\u6d1b\u4f0a", "\u7533\u9e64", "\u516b\u91cd\u795e\u5b50\uff08\u795e\u5b50\uff09", "\u795e\u91cc\u7eeb\u4eba\uff08\u7eeb\u4eba\uff09", "\u591c\u5170", "\u4e45\u5c90\u5fcd", "\u9e7f\u91ce\u82d1\u5e73\u85cf", "\u63d0\u7eb3\u91cc", "\u67ef\u83b1", "\u591a\u8389", "\u4e91\u5807", "\u7eb3\u897f\u59b2\uff08\u8349\u795e\uff09", "\u6df1\u6e0a\u4f7f\u5f92", "\u59ae\u9732", "\u8d5b\u8bfa", "\u503a\u52a1\u5904\u7406\u4eba", "\u574e\u8482\u4e1d", "\u771f\u5f13\u5feb\u8f66", "\u79cb\u4eba", "\u671b\u65cf", "\u827e\u5c14\u83f2", "\u827e\u8389\u4e1d", "\u827e\u4f26", "\u963f\u6d1b\u74e6", "\u5929\u91ce", "\u5929\u76ee\u5341\u4e94", "\u611a\u4eba\u4f17-\u5b89\u5fb7\u70c8", "\u5b89\u987a", "\u5b89\u897f", "\u8475", "\u9752\u6728", "\u8352\u5ddd\u5e78\u6b21", "\u8352\u8c37", "\u6709\u6cfd", "\u6d45\u5ddd", "\u9ebb\u7f8e", "\u51dd\u5149\u52a9\u624b", "\u963f\u6258", "\u7afa\u5b50", "\u767e\u8bc6", "\u767e\u95fb", "\u767e\u6653", "\u767d\u672f", "\u8d1d\u96c5\u7279\u4e3d\u5947", "\u4e3d\u5854", "\u5931\u843d\u8ff7\u8fed", "\u7f2d\u4e71\u661f\u68d8", "\u4f0a\u7538", "\u4f0f\u7279\u52a0\u5973\u5b69", "\u72c2\u70ed\u84dd\u8c03", "\u8389\u8389\u5a05", "\u841d\u838e\u8389\u5a05", "\u516b\u91cd\u6a31", "\u516b\u91cd\u971e", "\u5361\u83b2", "\u7b2c\u516d\u591c\u60f3\u66f2", "\u5361\u841d\u5c14", "\u59ec\u5b50", "\u6781\u5730\u6218\u5203", "\u5e03\u6d1b\u59ae\u5a05", "\u6b21\u751f\u94f6\u7ffc", "\u7406\u4e4b\u5f8b\u8005%26\u5e0c\u513f", "\u7406\u4e4b\u5f8b\u8005", "\u8ff7\u57ce\u9a87\u5154", "\u5e0c\u513f", "\u9b47\u591c\u661f\u6e0a", "\u9ed1\u5e0c\u513f", "\u5e15\u6735\u83f2\u8389\u4e1d", "\u4e0d\u706d\u661f\u951a", "\u5929\u5143\u9a91\u82f1", "\u5e7d\u5170\u9edb\u5c14", "\u6d3e\u8499bh3", "\u7231\u9171", "\u7eef\u7389\u4e38", "\u5fb7\u4e3d\u838e", "\u6708\u4e0b\u521d\u62e5", "\u6714\u591c\u89c2\u661f", "\u66ae\u5149\u9a91\u58eb", "\u683c\u857e\u4fee", "\u7559\u4e91\u501f\u98ce\u771f\u541b", "\u6885\u6bd4\u4e4c\u65af", "\u4eff\u72b9\u5927", "\u514b\u83b1\u56e0", "\u5723\u5251\u5e7d\u5170\u9edb\u5c14", "\u5996\u7cbe\u7231\u8389", "\u7279\u65af\u62c9zero", "\u82cd\u7384", "\u82e5\u6c34", "\u897f\u7433", "\u6234\u56e0\u65af\u96f7\u5e03", "\u8d1d\u62c9", "\u8d64\u9e22", "\u9547\u9b42\u6b4c", "\u6e21\u9e26", "\u4eba\u4e4b\u5f8b\u8005", "\u7231\u8389\u5e0c\u96c5", "\u5929\u7a79\u6e38\u4fa0", "\u742a\u4e9a\u5a1c", "\u7a7a\u4e4b\u5f8b\u8005", "\u85aa\u708e\u4e4b\u5f8b\u8005", "\u4e91\u58a8\u4e39\u5fc3", "\u7b26\u534e", "\u8bc6\u4e4b\u5f8b\u8005", "\u7279\u74e6\u6797", "\u7ef4\u5c14\u8587", "\u82bd\u8863", "\u96f7\u4e4b\u5f8b\u8005", "\u65ad\u7f6a\u5f71\u821e", "\u963f\u6ce2\u5c3c\u4e9a", "\u698e\u672c", "\u5384\u5c3c\u65af\u7279", "\u6076\u9f99", "\u8303\u4e8c\u7237", "\u6cd5\u62c9", "\u611a\u4eba\u4f17\u58eb\u5175", "\u611a\u4eba\u4f17\u58eb\u5175a", "\u611a\u4eba\u4f17\u58eb\u5175b", "\u611a\u4eba\u4f17\u58eb\u5175c", "\u611a\u4eba\u4f17a", "\u611a\u4eba\u4f17b", "\u98de\u98de", "\u83f2\u5229\u514b\u65af", "\u5973\u6027\u8ddf\u968f\u8005", "\u9022\u5ca9", "\u6446\u6e21\u4eba", "\u72c2\u8e81\u7684\u7537\u4eba", "\u5965\u5179", "\u8299\u841d\u62c9", "\u8ddf\u968f\u8005", "\u871c\u6c41\u751f\u7269", "\u9ec4\u9ebb\u5b50", "\u6e0a\u4e0a", "\u85e4\u6728", "\u6df1\u89c1", "\u798f\u672c", "\u8299\u84c9", "\u53e4\u6cfd", "\u53e4\u7530", "\u53e4\u5c71", "\u53e4\u8c37\u6607", "\u5085\u4e09\u513f", "\u9ad8\u8001\u516d", "\u77ff\u5de5\u5192", "\u5143\u592a", "\u5fb7\u5b89\u516c", "\u8302\u624d\u516c", "\u6770\u62c9\u5fb7", "\u845b\u7f57\u4e3d", "\u91d1\u5ffd\u5f8b", "\u516c\u4fca", "\u9505\u5df4", "\u6b4c\u5fb7", "\u963f\u8c6a", "\u72d7\u4e09\u513f", "\u845b\u745e\u4e1d", "\u82e5\u5fc3", "\u963f\u5c71\u5a46", "\u602a\u9e1f", "\u5e7f\u7af9", "\u89c2\u6d77", "\u5173\u5b8f", "\u871c\u6c41\u536b\u5175", "\u5b88\u536b1", "\u50b2\u6162\u7684\u5b88\u536b", "\u5bb3\u6015\u7684\u5b88\u536b", "\u8d35\u5b89", "\u76d6\u4f0a", "\u963f\u521b", "\u54c8\u592b\u4e39", "\u65e5\u8bed\u963f\u8d1d\u591a\uff08\u91ce\u5c9b\u5065\u513f\uff09", "\u65e5\u8bed\u57c3\u6d1b\u4f0a\uff08\u9ad8\u57a3\u5f69\u9633\uff09", "\u65e5\u8bed\u5b89\u67cf\uff08\u77f3\u89c1\u821e\u83dc\u9999\uff09", "\u65e5\u8bed\u795e\u91cc\u7eeb\u534e\uff08\u65e9\u89c1\u6c99\u7ec7\uff09", "\u65e5\u8bed\u795e\u91cc\u7eeb\u4eba\uff08\u77f3\u7530\u5f70\uff09", "\u65e5\u8bed\u767d\u672f\uff08\u6e38\u4f50\u6d69\u4e8c\uff09", "\u65e5\u8bed\u82ad\u82ad\u62c9\uff08\u9b3c\u5934\u660e\u91cc\uff09", "\u65e5\u8bed\u5317\u6597\uff08\u5c0f\u6e05\u6c34\u4e9a\u7f8e\uff09", "\u65e5\u8bed\u73ed\u5c3c\u7279\uff08\u9022\u5742\u826f\u592a\uff09", "\u65e5\u8bed\u574e\u8482\u4e1d\uff08\u67da\u6728\u51c9\u9999\uff09", "\u65e5\u8bed\u91cd\u4e91\uff08\u9f50\u85e4\u58ee\u9a6c\uff09", "\u65e5\u8bed\u67ef\u83b1\uff08\u524d\u5ddd\u51c9\u5b50\uff09", "\u65e5\u8bed\u8d5b\u8bfa\uff08\u5165\u91ce\u81ea\u7531\uff09", "\u65e5\u8bed\u6234\u56e0\u65af\u96f7\u5e03\uff08\u6d25\u7530\u5065\u6b21\u90ce\uff09", "\u65e5\u8bed\u8fea\u5362\u514b\uff08\u5c0f\u91ce\u8d24\u7ae0\uff09", "\u65e5\u8bed\u8fea\u5965\u5a1c\uff08\u4e95\u6cfd\u8bd7\u7ec7\uff09", "\u65e5\u8bed\u591a\u8389\uff08\u91d1\u7530\u670b\u5b50\uff09", "\u65e5\u8bed\u4f18\u83c8\uff08\u4f50\u85e4\u5229\u5948\uff09", "\u65e5\u8bed\u83f2\u8c22\u5c14\uff08\u5185\u7530\u771f\u793c\uff09", "\u65e5\u8bed\u7518\u96e8\uff08\u4e0a\u7530\u4e3d\u5948\uff09", "\u65e5\u8bed\uff08\u7560\u4e2d\u7950\uff09", "\u65e5\u8bed\u9e7f\u91ce\u9662\u5e73\u85cf\uff08\u4e95\u53e3\u7950\u4e00\uff09", "\u65e5\u8bed\u7a7a\uff08\u5800\u6c5f\u77ac\uff09", "\u65e5\u8bed\u8367\uff08\u60a0\u6728\u78a7\uff09", "\u65e5\u8bed\u80e1\u6843\uff08\u9ad8\u6865\u674e\u4f9d\uff09", "\u65e5\u8bed\u4e00\u6597\uff08\u897f\u5ddd\u8d35\u6559\uff09", "\u65e5\u8bed\u51ef\u4e9a\uff08\u9e1f\u6d77\u6d69\u8f85\uff09", "\u65e5\u8bed\u4e07\u53f6\uff08\u5c9b\u5d0e\u4fe1\u957f\uff09", "\u65e5\u8bed\u523b\u6674\uff08\u559c\u591a\u6751\u82f1\u68a8\uff09", "\u65e5\u8bed\u53ef\u8389\uff08\u4e45\u91ce\u7f8e\u54b2\uff09", "\u65e5\u8bed\u5fc3\u6d77\uff08\u4e09\u68ee\u94c3\u5b50\uff09", "\u65e5\u8bed\u4e5d\u6761\u88df\u7f57\uff08\u6fd1\u6237\u9ebb\u6c99\u7f8e\uff09", "\u65e5\u8bed\u4e3d\u838e\uff08\u7530\u4e2d\u7406\u60e0\uff09", "\u65e5\u8bed\u83ab\u5a1c\uff08\u5c0f\u539f\u597d\u7f8e\uff09", "\u65e5\u8bed\u7eb3\u897f\u59b2\uff08\u7530\u6751\u7531\u52a0\u8389\uff09", "\u65e5\u8bed\u59ae\u9732\uff08\u91d1\u5143\u5bff\u5b50\uff09", "\u65e5\u8bed\u51dd\u5149\uff08\u5927\u539f\u6c99\u8036\u9999\uff09", "\u65e5\u8bed\u8bfa\u827e\u5c14\uff08\u9ad8\u5c3e\u594f\u97f3\uff09", "\u65e5\u8bed\u5965\u5179\uff08\u589e\u8c37\u5eb7\u7eaa\uff09", "\u65e5\u8bed\u6d3e\u8499\uff08\u53e4\u8d3a\u8475\uff09", "\u65e5\u8bed\u7434\uff08\u658b\u85e4\u5343\u548c\uff09", "\u65e5\u8bed\u4e03\u4e03\uff08\u7530\u6751\u7531\u52a0\u8389\uff09", "\u65e5\u8bed\u96f7\u7535\u5c06\u519b\uff08\u6cfd\u57ce\u7f8e\u96ea\uff09", "\u65e5\u8bed\u96f7\u6cfd\uff08\u5185\u5c71\u6602\u8f89\uff09", "\u65e5\u8bed\u7f57\u838e\u8389\u4e9a\uff08\u52a0\u9688\u4e9a\u8863\uff09", "\u65e5\u8bed\u65e9\u67da\uff08\u6d32\u5d0e\u7eeb\uff09", "\u65e5\u8bed\u6563\u5175\uff08\u67ff\u539f\u5f7b\u4e5f\uff09", "\u65e5\u8bed\u7533\u9e64\uff08\u5ddd\u6f84\u7eeb\u5b50\uff09", "\u65e5\u8bed\u4e45\u5c90\u5fcd\uff08\u6c34\u6865\u9999\u7ec7\uff09", "\u65e5\u8bed\u5973\u58eb\uff08\u5e84\u5b50\u88d5\u8863\uff09", "\u65e5\u8bed\u7802\u7cd6\uff08\u85e4\u7530\u831c\uff09", "\u65e5\u8bed\u8fbe\u8fbe\u5229\u4e9a\uff08\u6728\u6751\u826f\u5e73\uff09", "\u65e5\u8bed\u6258\u9a6c\uff08\u68ee\u7530\u6210\u4e00\uff09", "\u65e5\u8bed\u63d0\u7eb3\u91cc\uff08\u5c0f\u6797\u6c99\u82d7\uff09", "\u65e5\u8bed\u6e29\u8fea\uff08\u6751\u6fd1\u6b65\uff09", "\u65e5\u8bed\u9999\u83f1\uff08\u5c0f\u6cfd\u4e9a\u674e\uff09", "\u65e5\u8bed\u9b48\uff08\u677e\u5188\u796f\u4e1e\uff09", "\u65e5\u8bed\u884c\u79cb\uff08\u7686\u5ddd\u7eaf\u5b50\uff09", "\u65e5\u8bed\u8f9b\u7131\uff08\u9ad8\u6865\u667a\u79cb\uff09", "\u65e5\u8bed\u516b\u91cd\u795e\u5b50\uff08\u4f50\u4ed3\u7eeb\u97f3\uff09", "\u65e5\u8bed\u70df\u7eef\uff08\u82b1\u5b88\u7531\u7f8e\u91cc\uff09", "\u65e5\u8bed\u591c\u5170\uff08\u8fdc\u85e4\u7eeb\uff09", "\u65e5\u8bed\u5bb5\u5bab\uff08\u690d\u7530\u4f73\u5948\uff09", "\u65e5\u8bed\u4e91\u5807\uff08\u5c0f\u5ca9\u4e95\u5c0f\u9e1f\uff09", "\u65e5\u8bed\u949f\u79bb\uff08\u524d\u91ce\u667a\u662d\uff09", "\u6770\u514b", "\u963f\u5409", "\u6c5f\u821f", "\u9274\u79cb", "\u5609\u4e49", "\u7eaa\u82b3", "\u666f\u6f84", "\u7ecf\u7eb6", "\u666f\u660e", "\u664b\u4f18", "\u963f\u9e20", "\u9152\u5ba2", "\u4e54\u5c14", "\u4e54\u745f\u592b", "\u7ea6\u987f", "\u4e54\u4f0a\u65af", "\u5c45\u5b89", "\u541b\u541b", "\u987a\u5409", "\u7eaf\u4e5f", "\u91cd\u4f50", "\u5927\u5c9b\u7eaf\u5e73", "\u84b2\u6cfd", "\u52d8\u89e3\u7531\u5c0f\u8def\u5065\u4e09\u90ce", "\u67ab", "\u67ab\u539f\u4e49\u5e86", "\u836b\u5c71", "\u7532\u6590\u7530\u9f8d\u99ac", "\u6d77\u6597", "\u60df\u795e\u6674\u4e4b\u4ecb", "\u9e7f\u91ce\u5948\u5948", "\u5361\u7435\u8389\u4e9a", "\u51ef\u745f\u7433", "\u52a0\u85e4\u4fe1\u609f", "\u52a0\u85e4\u6d0b\u5e73", "\u80dc\u5bb6", "\u8305\u847a\u4e00\u5e86", "\u548c\u662d", "\u4e00\u6b63", "\u4e00\u9053", "\u6842\u4e00", "\u5e86\u6b21\u90ce", "\u963f\u8d24", "\u5065\u53f8", "\u5065\u6b21\u90ce", "\u5065\u4e09\u90ce", "\u5929\u7406", "\u6740\u624ba", "\u6740\u624bb", "\u6728\u5357\u674f\u5948", "\u6728\u6751", "\u56fd\u738b", "\u6728\u4e0b", "\u5317\u6751", "\u6e05\u60e0", "\u6e05\u4eba", "\u514b\u5217\u95e8\u7279", "\u9a91\u58eb", "\u5c0f\u6797", "\u5c0f\u6625", "\u5eb7\u62c9\u5fb7", "\u5927\u8089\u4e38", "\u7434\u7f8e", "\u5b8f\u4e00", "\u5eb7\u4ecb", "\u5e78\u5fb7", "\u9ad8\u5584", "\u68a2", "\u514b\u7f57\u7d22", "\u4e45\u4fdd", "\u4e5d\u6761\u9570\u6cbb", "\u4e45\u6728\u7530", "\u6606\u94a7", "\u83ca\u5730\u541b", "\u4e45\u5229\u987b", "\u9ed1\u7530", "\u9ed1\u6cfd\u4eac\u4e4b\u4ecb", "\u54cd\u592a", "\u5c9a\u59d0", "\u5170\u6eaa", "\u6f9c\u9633", "\u52b3\u4f26\u65af", "\u4e50\u660e", "\u83b1\u8bfa", "\u83b2", "\u826f\u5b50", "\u674e\u5f53", "\u674e\u4e01", "\u5c0f\u4e50", "\u7075", "\u5c0f\u73b2", "\u7433\u7405a", "\u7433\u7405b", "\u5c0f\u5f6c", "\u5c0f\u5fb7", "\u5c0f\u697d", "\u5c0f\u9f99", "\u5c0f\u5434", "\u5c0f\u5434\u7684\u8bb0\u5fc6", "\u7406\u6b63", "\u963f\u9f99", "\u5362\u5361", "\u6d1b\u6210", "\u7f57\u5de7", "\u5317\u98ce\u72fc", "\u5362\u6b63", "\u840d\u59e5\u59e5", "\u524d\u7530", "\u771f\u663c", "\u9ebb\u7eaa", "\u771f", "\u611a\u4eba\u4f17-\u9a6c\u514b\u897f\u59c6", "\u5973\u6027a", "\u5973\u6027b", "\u5973\u6027a\u7684\u8ddf\u968f\u8005", "\u963f\u5b88", "\u739b\u683c\u4e3d\u7279", "\u771f\u7406", "\u739b\u4e54\u4e3d", "\u739b\u6587", "\u6b63\u80dc", "\u660c\u4fe1", "\u5c06\u53f8", "\u6b63\u4eba", "\u8def\u7237", "\u8001\u7ae0", "\u677e\u7530", "\u677e\u672c", "\u677e\u6d66", "\u677e\u5742", "\u8001\u5b5f", "\u5b5f\u4e39", "\u5546\u4eba\u968f\u4ece", "\u4f20\u4ee4\u5175", "\u7c73\u6b47\u5c14", "\u5fa1\u8206\u6e90\u4e00\u90ce", "\u5fa1\u8206\u6e90\u6b21\u90ce", "\u5343\u5ca9\u519b\u6559\u5934", "\u5343\u5ca9\u519b\u58eb\u5175", "\u660e\u535a", "\u660e\u4fca", "\u7f8e\u94c3", "\u7f8e\u548c", "\u963f\u5e78", "\u524a\u6708\u7b51\u9633\u771f\u541b", "\u94b1\u773c\u513f", "\u68ee\u5f66", "\u5143\u52a9", "\u7406\u6c34\u53e0\u5c71\u771f\u541b", "\u7406\u6c34\u758a\u5c71\u771f\u541b", "\u6731\u8001\u677f", "\u6728\u6728", "\u6751\u4e0a", "\u6751\u7530", "\u6c38\u91ce", "\u957f\u91ce\u539f\u9f99\u4e4b\u4ecb", "\u957f\u6fd1", "\u4e2d\u91ce\u5fd7\u4e43", "\u83dc\u83dc\u5b50", "\u6960\u6960", "\u6210\u6fd1", "\u963f\u5185", "\u5b81\u7984", "\u725b\u5fd7", "\u4fe1\u535a", "\u4f38\u592b", "\u91ce\u65b9", "\u8bfa\u62c9", "\u7eaa\u9999", "\u8bfa\u66fc", "\u4fee\u5973", "\u7eaf\u6c34\u7cbe\u7075", "\u5c0f\u5ddd", "\u5c0f\u4ed3\u6faa", "\u5188\u6797", "\u5188\u5d0e\u7ed8\u91cc\u9999", "\u5188\u5d0e\u9646\u6597", "\u5965\u62c9\u592b", "\u8001\u79d1", "\u9b3c\u5a46\u5a46", "\u5c0f\u91ce\u5bfa", "\u5927\u6cb3\u539f\u4e94\u53f3\u536b\u95e8", "\u5927\u4e45\u4fdd\u5927\u4ecb", "\u5927\u68ee", "\u5927\u52a9", "\u5965\u7279", "\u6d3e\u8499", "\u6d3e\u84992", "\u75c5\u4ebaa", "\u75c5\u4ebab", "\u5df4\u987f", "\u6d3e\u6069", "\u670b\u4e49", "\u56f4\u89c2\u7fa4\u4f17", "\u56f4\u89c2\u7fa4\u4f17a", "\u56f4\u89c2\u7fa4\u4f17b", "\u56f4\u89c2\u7fa4\u4f17c", "\u56f4\u89c2\u7fa4\u4f17d", "\u56f4\u89c2\u7fa4\u4f17e", "\u94dc\u96c0", "\u963f\u80a5", "\u5174\u53d4", "\u8001\u5468\u53d4", "\u516c\u4e3b", "\u5f7c\u5f97", "\u4e7e\u5b50", "\u828a\u828a", "\u4e7e\u73ae", "\u7eee\u547d", "\u675e\u5e73", "\u79cb\u6708", "\u6606\u6069", "\u96f7\u7535\u5f71", "\u5170\u9053\u5c14", "\u96f7\u8499\u5fb7", "\u5192\u5931\u7684\u5e15\u62c9\u5fb7", "\u4f36\u4e00", "\u73b2\u82b1", "\u963f\u4ec1", "\u5bb6\u81e3\u4eec", "\u68a8\u7ed8", "\u8363\u6c5f", "\u620e\u4e16", "\u6d6a\u4eba", "\u7f57\u4f0a\u65af", "\u5982\u610f", "\u51c9\u5b50", "\u5f69\u9999", "\u9152\u4e95", "\u5742\u672c", "\u6714\u6b21\u90ce", "\u6b66\u58eba", "\u6b66\u58ebb", "\u6b66\u58ebc", "\u6b66\u58ebd", "\u73ca\u745a", "\u4e09\u7530", "\u838e\u62c9", "\u7b39\u91ce", "\u806a\u7f8e", "\u806a", "\u5c0f\u767e\u5408", "\u6563\u5175", "\u5bb3\u6015\u7684\u5c0f\u5218", "\u8212\u4f2f\u7279", "\u8212\u8328", "\u6d77\u9f99", "\u4e16\u5b50", "\u8c22\u5c14\u76d6", "\u5bb6\u4e01", "\u5546\u534e", "\u6c99\u5bc5", "\u963f\u5347", "\u67f4\u7530", "\u963f\u8302", "\u5f0f\u5927\u5c06", "\u6e05\u6c34", "\u5fd7\u6751\u52d8\u5175\u536b", "\u65b0\u4e4b\u4e1e", "\u5fd7\u7ec7", "\u77f3\u5934", "\u8bd7\u7fbd", "\u8bd7\u7b60", "\u77f3\u58ee", "\u7fd4\u592a", "\u6b63\u4e8c", "\u5468\u5e73", "\u8212\u6768", "\u9f50\u683c\u8299\u4e3d\u96c5", "\u5973\u58eb", "\u601d\u52e4", "\u516d\u6307\u4e54\u745f", "\u611a\u4eba\u4f17\u5c0f\u5175d", "\u611a\u4eba\u4f17\u5c0f\u5175a", "\u611a\u4eba\u4f17\u5c0f\u5175b", "\u611a\u4eba\u4f17\u5c0f\u5175c", "\u5434\u8001\u4e94", "\u5434\u8001\u4e8c", "\u6ed1\u5934\u9b3c", "\u8a00\u7b11", "\u5434\u8001\u4e03", "\u58eb\u5175h", "\u58eb\u5175i", "\u58eb\u5175a", "\u58eb\u5175b", "\u58eb\u5175c", "\u58eb\u5175d", "\u58eb\u5175e", "\u58eb\u5175f", "\u58eb\u5175g", "\u594f\u592a", "\u65af\u5766\u5229", "\u6387\u661f\u652b\u8fb0\u5929\u541b", "\u5c0f\u5934", "\u5927\u6b66", "\u9676\u4e49\u9686", "\u6749\u672c", "\u82cf\u897f", "\u5acc\u7591\u4ebaa", "\u5acc\u7591\u4ebab", "\u5acc\u7591\u4ebac", "\u5acc\u7591\u4ebad", "\u65af\u4e07", "\u5251\u5ba2a", "\u5251\u5ba2b", "\u963f\u4e8c", "\u5fe0\u80dc", "\u5fe0\u592b", "\u963f\u656c", "\u5b5d\u5229", "\u9e70\u53f8\u8fdb", "\u9ad8\u5c71", "\u4e5d\u6761\u5b5d\u884c", "\u6bc5", "\u7af9\u5185", "\u62d3\u771f", "\u5353\u4e5f", "\u592a\u90ce\u4e38", "\u6cf0\u52d2", "\u624b\u5c9b", "\u54f2\u5e73", "\u54f2\u592b", "\u6258\u514b", "\u5927boss", "\u963f\u5f3a", "\u6258\u5c14\u5fb7\u62c9", "\u65c1\u89c2\u8005", "\u5929\u6210", "\u963f\u5927", "\u8482\u739b\u4e4c\u65af", "\u63d0\u7c73", "\u6237\u7530", "\u963f\u4e09", "\u4e00\u8d77\u7684\u4eba", "\u5fb7\u7530", "\u5fb7\u957f", "\u667a\u6811", "\u5229\u5f66", "\u80d6\u4e4e\u4e4e\u7684\u65c5\u884c\u8005", "\u85cf\u5b9d\u4ebaa", "\u85cf\u5b9d\u4ebab", "\u85cf\u5b9d\u4ebac", "\u85cf\u5b9d\u4ebad", "\u963f\u7947", "\u6052\u96c4", "\u9732\u5b50", "\u8bdd\u5267\u56e2\u56e2\u957f", "\u5185\u6751", "\u4e0a\u91ce", "\u4e0a\u6749", "\u8001\u6234", "\u8001\u9ad8", "\u8001\u8d3e", "\u8001\u58a8", "\u8001\u5b59", "\u5929\u67a2\u661f", "\u8001\u4e91", "\u6709\u4e50\u658b", "\u4e11\u96c4", "\u4e4c\u7ef4", "\u74e6\u4eac", "\u83f2\u5c14\u6208\u9edb\u7279", "\u7ef4\u591a\u5229\u4e9a", "\u8587\u5c14", "\u74e6\u683c\u7eb3", "\u963f\u5916", "\u4f8d\u5973", "\u74e6\u62c9", "\u671b\u96c5", "\u5b9b\u70df", "\u742c\u7389", "\u6218\u58eba", "\u6218\u58ebb", "\u6e21\u8fba", "\u6e21\u90e8", "\u963f\u4f1f", "\u6587\u749f", "\u6587\u6e0a", "\u97e6\u5c14\u7eb3", "\u738b\u6273\u624b", "\u6b66\u6c9b", "\u6653\u98de", "\u8f9b\u7a0b", "\u661f\u706b", "\u661f\u7a00", "\u8f9b\u79c0", "\u79c0\u534e", "\u963f\u65ed", "\u5f90\u5218\u5e08", "\u77e2\u90e8", "\u516b\u6728", "\u5c71\u4e0a", "\u963f\u9633", "\u989c\u7b11", "\u5eb7\u660e", "\u6cf0\u4e45", "\u5b89\u6b66", "\u77e2\u7530\u5e78\u559c", "\u77e2\u7530\u8f9b\u559c", "\u4e49\u575a", "\u83ba\u513f", "\u76c8\u4e30", "\u5b9c\u5e74", "\u94f6\u674f", "\u9038\u8f69", "\u6a2a\u5c71", "\u6c38\u8d35", "\u6c38\u4e1a", "\u5609\u4e45", "\u5409\u5ddd", "\u4e49\u9ad8", "\u7528\u9ad8", "\u9633\u592a", "\u5143\u84c9", "\u73a5\u8f89", "\u6bd3\u534e", "\u6709\u9999", "\u5e78\u4e5f", "\u7531\u771f", "\u7ed3\u83dc", "\u97f5\u5b81", "\u767e\u5408", "\u767e\u5408\u534e", "\u5c24\u82cf\u6ce2\u592b", "\u88d5\u5b50", "\u60a0\u7b56", "\u60a0\u4e5f", "\u4e8e\u5ae3", "\u67da\u5b50", "\u8001\u90d1", "\u6b63\u8302", "\u5fd7\u6210", "\u82b7\u5de7", "\u77e5\u6613", "\u652f\u652f", "\u5468\u826f", "\u73e0\u51fd", "\u795d\u660e", "\u795d\u6d9b"],
|
54 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
55 |
+
}
|
data_utils.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
|
8 |
+
import commons
|
9 |
+
from mel_processing import spectrogram_torch
|
10 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
11 |
+
from text import text_to_sequence, cleaned_text_to_sequence
|
12 |
+
|
13 |
+
|
14 |
+
class TextAudioLoader(torch.utils.data.Dataset):
|
15 |
+
"""
|
16 |
+
1) loads audio, text pairs
|
17 |
+
2) normalizes text and converts them to sequences of integers
|
18 |
+
3) computes spectrograms from audio files.
|
19 |
+
"""
|
20 |
+
def __init__(self, audiopaths_and_text, hparams):
|
21 |
+
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
22 |
+
self.text_cleaners = hparams.text_cleaners
|
23 |
+
self.max_wav_value = hparams.max_wav_value
|
24 |
+
self.sampling_rate = hparams.sampling_rate
|
25 |
+
self.filter_length = hparams.filter_length
|
26 |
+
self.hop_length = hparams.hop_length
|
27 |
+
self.win_length = hparams.win_length
|
28 |
+
self.sampling_rate = hparams.sampling_rate
|
29 |
+
|
30 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
31 |
+
|
32 |
+
self.add_blank = hparams.add_blank
|
33 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
34 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
35 |
+
|
36 |
+
random.seed(1234)
|
37 |
+
random.shuffle(self.audiopaths_and_text)
|
38 |
+
self._filter()
|
39 |
+
|
40 |
+
|
41 |
+
def _filter(self):
|
42 |
+
"""
|
43 |
+
Filter text & store spec lengths
|
44 |
+
"""
|
45 |
+
# Store spectrogram lengths for Bucketing
|
46 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
47 |
+
# spec_length = wav_length // hop_length
|
48 |
+
|
49 |
+
audiopaths_and_text_new = []
|
50 |
+
lengths = []
|
51 |
+
for audiopath, text in self.audiopaths_and_text:
|
52 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
53 |
+
audiopaths_and_text_new.append([audiopath, text])
|
54 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
55 |
+
self.audiopaths_and_text = audiopaths_and_text_new
|
56 |
+
self.lengths = lengths
|
57 |
+
|
58 |
+
def get_audio_text_pair(self, audiopath_and_text):
|
59 |
+
# separate filename and text
|
60 |
+
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
|
61 |
+
text = self.get_text(text)
|
62 |
+
spec, wav = self.get_audio(audiopath)
|
63 |
+
return (text, spec, wav)
|
64 |
+
|
65 |
+
def get_audio(self, filename):
|
66 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
67 |
+
if sampling_rate != self.sampling_rate:
|
68 |
+
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
69 |
+
sampling_rate, self.sampling_rate))
|
70 |
+
audio_norm = audio / self.max_wav_value
|
71 |
+
audio_norm = audio_norm.unsqueeze(0)
|
72 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
73 |
+
if os.path.exists(spec_filename):
|
74 |
+
spec = torch.load(spec_filename)
|
75 |
+
else:
|
76 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
77 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
78 |
+
center=False)
|
79 |
+
spec = torch.squeeze(spec, 0)
|
80 |
+
torch.save(spec, spec_filename)
|
81 |
+
return spec, audio_norm
|
82 |
+
|
83 |
+
def get_text(self, text):
|
84 |
+
if self.cleaned_text:
|
85 |
+
text_norm = cleaned_text_to_sequence(text)
|
86 |
+
else:
|
87 |
+
text_norm = text_to_sequence(text, self.text_cleaners)
|
88 |
+
if self.add_blank:
|
89 |
+
text_norm = commons.intersperse(text_norm, 0)
|
90 |
+
text_norm = torch.LongTensor(text_norm)
|
91 |
+
return text_norm
|
92 |
+
|
93 |
+
def __getitem__(self, index):
|
94 |
+
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
95 |
+
|
96 |
+
def __len__(self):
|
97 |
+
return len(self.audiopaths_and_text)
|
98 |
+
|
99 |
+
|
100 |
+
class TextAudioCollate():
|
101 |
+
""" Zero-pads model inputs and targets
|
102 |
+
"""
|
103 |
+
def __init__(self, return_ids=False):
|
104 |
+
self.return_ids = return_ids
|
105 |
+
|
106 |
+
def __call__(self, batch):
|
107 |
+
"""Collate's training batch from normalized text and aduio
|
108 |
+
PARAMS
|
109 |
+
------
|
110 |
+
batch: [text_normalized, spec_normalized, wav_normalized]
|
111 |
+
"""
|
112 |
+
# Right zero-pad all one-hot text sequences to max input length
|
113 |
+
_, ids_sorted_decreasing = torch.sort(
|
114 |
+
torch.LongTensor([x[1].size(1) for x in batch]),
|
115 |
+
dim=0, descending=True)
|
116 |
+
|
117 |
+
max_text_len = max([len(x[0]) for x in batch])
|
118 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
119 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
120 |
+
|
121 |
+
text_lengths = torch.LongTensor(len(batch))
|
122 |
+
spec_lengths = torch.LongTensor(len(batch))
|
123 |
+
wav_lengths = torch.LongTensor(len(batch))
|
124 |
+
|
125 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
126 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
127 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
128 |
+
text_padded.zero_()
|
129 |
+
spec_padded.zero_()
|
130 |
+
wav_padded.zero_()
|
131 |
+
for i in range(len(ids_sorted_decreasing)):
|
132 |
+
row = batch[ids_sorted_decreasing[i]]
|
133 |
+
|
134 |
+
text = row[0]
|
135 |
+
text_padded[i, :text.size(0)] = text
|
136 |
+
text_lengths[i] = text.size(0)
|
137 |
+
|
138 |
+
spec = row[1]
|
139 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
140 |
+
spec_lengths[i] = spec.size(1)
|
141 |
+
|
142 |
+
wav = row[2]
|
143 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
144 |
+
wav_lengths[i] = wav.size(1)
|
145 |
+
|
146 |
+
if self.return_ids:
|
147 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
|
148 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
|
149 |
+
|
150 |
+
|
151 |
+
"""Multi speaker version"""
|
152 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
153 |
+
"""
|
154 |
+
1) loads audio, speaker_id, text pairs
|
155 |
+
2) normalizes text and converts them to sequences of integers
|
156 |
+
3) computes spectrograms from audio files.
|
157 |
+
"""
|
158 |
+
def __init__(self, audiopaths_sid_text, hparams):
|
159 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
160 |
+
self.text_cleaners = hparams.text_cleaners
|
161 |
+
self.max_wav_value = hparams.max_wav_value
|
162 |
+
self.sampling_rate = hparams.sampling_rate
|
163 |
+
self.filter_length = hparams.filter_length
|
164 |
+
self.hop_length = hparams.hop_length
|
165 |
+
self.win_length = hparams.win_length
|
166 |
+
self.sampling_rate = hparams.sampling_rate
|
167 |
+
|
168 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
169 |
+
|
170 |
+
self.add_blank = hparams.add_blank
|
171 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
172 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
173 |
+
|
174 |
+
random.seed(1234)
|
175 |
+
random.shuffle(self.audiopaths_sid_text)
|
176 |
+
self._filter()
|
177 |
+
|
178 |
+
def _filter(self):
|
179 |
+
"""
|
180 |
+
Filter text & store spec lengths
|
181 |
+
"""
|
182 |
+
# Store spectrogram lengths for Bucketing
|
183 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
184 |
+
# spec_length = wav_length // hop_length
|
185 |
+
|
186 |
+
audiopaths_sid_text_new = []
|
187 |
+
lengths = []
|
188 |
+
for audiopath, sid, text in self.audiopaths_sid_text:
|
189 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
190 |
+
audiopaths_sid_text_new.append([audiopath, sid, text])
|
191 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
192 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
193 |
+
self.lengths = lengths
|
194 |
+
|
195 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
196 |
+
# separate filename, speaker_id and text
|
197 |
+
audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
|
198 |
+
text = self.get_text(text)
|
199 |
+
spec, wav = self.get_audio(audiopath)
|
200 |
+
sid = self.get_sid(sid)
|
201 |
+
return (text, spec, wav, sid)
|
202 |
+
|
203 |
+
def get_audio(self, filename):
|
204 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
205 |
+
if sampling_rate != self.sampling_rate:
|
206 |
+
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
207 |
+
sampling_rate, self.sampling_rate))
|
208 |
+
audio_norm = audio / self.max_wav_value
|
209 |
+
audio_norm = audio_norm.unsqueeze(0)
|
210 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
211 |
+
if os.path.exists(spec_filename):
|
212 |
+
spec = torch.load(spec_filename)
|
213 |
+
else:
|
214 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
215 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
216 |
+
center=False)
|
217 |
+
spec = torch.squeeze(spec, 0)
|
218 |
+
torch.save(spec, spec_filename)
|
219 |
+
return spec, audio_norm
|
220 |
+
|
221 |
+
def get_text(self, text):
|
222 |
+
if self.cleaned_text:
|
223 |
+
text_norm = cleaned_text_to_sequence(text)
|
224 |
+
else:
|
225 |
+
text_norm = text_to_sequence(text, self.text_cleaners)
|
226 |
+
if self.add_blank:
|
227 |
+
text_norm = commons.intersperse(text_norm, 0)
|
228 |
+
text_norm = torch.LongTensor(text_norm)
|
229 |
+
return text_norm
|
230 |
+
|
231 |
+
def get_sid(self, sid):
|
232 |
+
sid = torch.LongTensor([int(sid)])
|
233 |
+
return sid
|
234 |
+
|
235 |
+
def __getitem__(self, index):
|
236 |
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
237 |
+
|
238 |
+
def __len__(self):
|
239 |
+
return len(self.audiopaths_sid_text)
|
240 |
+
|
241 |
+
|
242 |
+
class TextAudioSpeakerCollate():
|
243 |
+
""" Zero-pads model inputs and targets
|
244 |
+
"""
|
245 |
+
def __init__(self, return_ids=False):
|
246 |
+
self.return_ids = return_ids
|
247 |
+
|
248 |
+
def __call__(self, batch):
|
249 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
250 |
+
PARAMS
|
251 |
+
------
|
252 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
253 |
+
"""
|
254 |
+
# Right zero-pad all one-hot text sequences to max input length
|
255 |
+
_, ids_sorted_decreasing = torch.sort(
|
256 |
+
torch.LongTensor([x[1].size(1) for x in batch]),
|
257 |
+
dim=0, descending=True)
|
258 |
+
|
259 |
+
max_text_len = max([len(x[0]) for x in batch])
|
260 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
261 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
262 |
+
|
263 |
+
text_lengths = torch.LongTensor(len(batch))
|
264 |
+
spec_lengths = torch.LongTensor(len(batch))
|
265 |
+
wav_lengths = torch.LongTensor(len(batch))
|
266 |
+
sid = torch.LongTensor(len(batch))
|
267 |
+
|
268 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
269 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
270 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
271 |
+
text_padded.zero_()
|
272 |
+
spec_padded.zero_()
|
273 |
+
wav_padded.zero_()
|
274 |
+
for i in range(len(ids_sorted_decreasing)):
|
275 |
+
row = batch[ids_sorted_decreasing[i]]
|
276 |
+
|
277 |
+
text = row[0]
|
278 |
+
text_padded[i, :text.size(0)] = text
|
279 |
+
text_lengths[i] = text.size(0)
|
280 |
+
|
281 |
+
spec = row[1]
|
282 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
283 |
+
spec_lengths[i] = spec.size(1)
|
284 |
+
|
285 |
+
wav = row[2]
|
286 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
287 |
+
wav_lengths[i] = wav.size(1)
|
288 |
+
|
289 |
+
sid[i] = row[3]
|
290 |
+
|
291 |
+
if self.return_ids:
|
292 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
|
293 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
|
294 |
+
|
295 |
+
|
296 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
297 |
+
"""
|
298 |
+
Maintain similar input lengths in a batch.
|
299 |
+
Length groups are specified by boundaries.
|
300 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
301 |
+
|
302 |
+
It removes samples which are not included in the boundaries.
|
303 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
304 |
+
"""
|
305 |
+
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
306 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
307 |
+
self.lengths = dataset.lengths
|
308 |
+
self.batch_size = batch_size
|
309 |
+
self.boundaries = boundaries
|
310 |
+
|
311 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
312 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
313 |
+
self.num_samples = self.total_size // self.num_replicas
|
314 |
+
|
315 |
+
def _create_buckets(self):
|
316 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
317 |
+
for i in range(len(self.lengths)):
|
318 |
+
length = self.lengths[i]
|
319 |
+
idx_bucket = self._bisect(length)
|
320 |
+
if idx_bucket != -1:
|
321 |
+
buckets[idx_bucket].append(i)
|
322 |
+
|
323 |
+
for i in range(len(buckets) - 1, 0, -1):
|
324 |
+
if len(buckets[i]) == 0:
|
325 |
+
buckets.pop(i)
|
326 |
+
self.boundaries.pop(i+1)
|
327 |
+
|
328 |
+
num_samples_per_bucket = []
|
329 |
+
for i in range(len(buckets)):
|
330 |
+
len_bucket = len(buckets[i])
|
331 |
+
total_batch_size = self.num_replicas * self.batch_size
|
332 |
+
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
333 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
334 |
+
return buckets, num_samples_per_bucket
|
335 |
+
|
336 |
+
def __iter__(self):
|
337 |
+
# deterministically shuffle based on epoch
|
338 |
+
g = torch.Generator()
|
339 |
+
g.manual_seed(self.epoch)
|
340 |
+
|
341 |
+
indices = []
|
342 |
+
if self.shuffle:
|
343 |
+
for bucket in self.buckets:
|
344 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
345 |
+
else:
|
346 |
+
for bucket in self.buckets:
|
347 |
+
indices.append(list(range(len(bucket))))
|
348 |
+
|
349 |
+
batches = []
|
350 |
+
for i in range(len(self.buckets)):
|
351 |
+
bucket = self.buckets[i]
|
352 |
+
len_bucket = len(bucket)
|
353 |
+
if len_bucket == 0:
|
354 |
+
continue
|
355 |
+
ids_bucket = indices[i]
|
356 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
357 |
+
|
358 |
+
# add extra samples to make it evenly divisible
|
359 |
+
rem = num_samples_bucket - len_bucket
|
360 |
+
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
361 |
+
|
362 |
+
# subsample
|
363 |
+
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
364 |
+
|
365 |
+
# batching
|
366 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
367 |
+
batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
|
368 |
+
batches.append(batch)
|
369 |
+
|
370 |
+
if self.shuffle:
|
371 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
372 |
+
batches = [batches[i] for i in batch_ids]
|
373 |
+
self.batches = batches
|
374 |
+
|
375 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
376 |
+
return iter(self.batches)
|
377 |
+
|
378 |
+
def _bisect(self, x, lo=0, hi=None):
|
379 |
+
if hi is None:
|
380 |
+
hi = len(self.boundaries) - 1
|
381 |
+
|
382 |
+
if hi > lo:
|
383 |
+
mid = (hi + lo) // 2
|
384 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
|
385 |
+
return mid
|
386 |
+
elif x <= self.boundaries[mid]:
|
387 |
+
return self._bisect(x, lo, mid)
|
388 |
+
else:
|
389 |
+
return self._bisect(x, mid + 1, hi)
|
390 |
+
else:
|
391 |
+
return -1
|
392 |
+
|
393 |
+
def __len__(self):
|
394 |
+
return self.num_samples // self.batch_size
|
inference.ipynb
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"pycharm": {
|
8 |
+
"name": "#%%\n"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"outputs": [],
|
12 |
+
"source": [
|
13 |
+
"%matplotlib inline\n",
|
14 |
+
"import matplotlib.pyplot as plt\n",
|
15 |
+
"import IPython.display as ipd\n",
|
16 |
+
"\n",
|
17 |
+
"import os\n",
|
18 |
+
"import json\n",
|
19 |
+
"import math\n",
|
20 |
+
"import torch\n",
|
21 |
+
"from torch import nn\n",
|
22 |
+
"from torch.nn import functional as F\n",
|
23 |
+
"from torch.utils.data import DataLoader\n",
|
24 |
+
"\n",
|
25 |
+
"import commons\n",
|
26 |
+
"import utils\n",
|
27 |
+
"from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n",
|
28 |
+
"from models import SynthesizerTrn\n",
|
29 |
+
"from text.symbols import symbols\n",
|
30 |
+
"from text import text_to_sequence\n",
|
31 |
+
"\n",
|
32 |
+
"from scipy.io.wavfile import write\n",
|
33 |
+
"\n",
|
34 |
+
"\n",
|
35 |
+
"def get_text(text, hps):\n",
|
36 |
+
" text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
|
37 |
+
" if hps.data.add_blank:\n",
|
38 |
+
" text_norm = commons.intersperse(text_norm, 0)\n",
|
39 |
+
" text_norm = torch.LongTensor(text_norm)\n",
|
40 |
+
" return text_norm"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "markdown",
|
45 |
+
"metadata": {
|
46 |
+
"pycharm": {
|
47 |
+
"name": "#%% md\n"
|
48 |
+
}
|
49 |
+
},
|
50 |
+
"source": [
|
51 |
+
"## Single Speaker"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
+
"metadata": {
|
58 |
+
"pycharm": {
|
59 |
+
"name": "#%%\n"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"hps = utils.get_hparams_from_file(\"configs/XXX.json\")"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
+
"metadata": {
|
71 |
+
"pycharm": {
|
72 |
+
"name": "#%%\n"
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"outputs": [],
|
76 |
+
"source": [
|
77 |
+
"net_g = SynthesizerTrn(\n",
|
78 |
+
" len(symbols),\n",
|
79 |
+
" hps.data.filter_length // 2 + 1,\n",
|
80 |
+
" hps.train.segment_size // hps.data.hop_length,\n",
|
81 |
+
" **hps.model).cuda()\n",
|
82 |
+
"_ = net_g.eval()\n",
|
83 |
+
"\n",
|
84 |
+
"_ = utils.load_checkpoint(\"/path/to/model.pth\", net_g, None)"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": null,
|
90 |
+
"metadata": {
|
91 |
+
"pycharm": {
|
92 |
+
"name": "#%%\n"
|
93 |
+
}
|
94 |
+
},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"stn_tst = get_text(\"こんにちは\", hps)\n",
|
98 |
+
"with torch.no_grad():\n",
|
99 |
+
" x_tst = stn_tst.cuda().unsqueeze(0)\n",
|
100 |
+
" x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
|
101 |
+
" audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
|
102 |
+
"ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "markdown",
|
107 |
+
"metadata": {
|
108 |
+
"pycharm": {
|
109 |
+
"name": "#%% md\n"
|
110 |
+
}
|
111 |
+
},
|
112 |
+
"source": [
|
113 |
+
"## Multiple Speakers"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": null,
|
119 |
+
"metadata": {
|
120 |
+
"pycharm": {
|
121 |
+
"name": "#%%\n"
|
122 |
+
}
|
123 |
+
},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"hps = utils.get_hparams_from_file(\"./configs/XXX.json\")"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": null,
|
132 |
+
"metadata": {
|
133 |
+
"pycharm": {
|
134 |
+
"name": "#%%\n"
|
135 |
+
}
|
136 |
+
},
|
137 |
+
"outputs": [],
|
138 |
+
"source": [
|
139 |
+
"net_g = SynthesizerTrn(\n",
|
140 |
+
" len(symbols),\n",
|
141 |
+
" hps.data.filter_length // 2 + 1,\n",
|
142 |
+
" hps.train.segment_size // hps.data.hop_length,\n",
|
143 |
+
" n_speakers=hps.data.n_speakers,\n",
|
144 |
+
" **hps.model).cuda()\n",
|
145 |
+
"_ = net_g.eval()\n",
|
146 |
+
"\n",
|
147 |
+
"_ = utils.load_checkpoint(\"/path/to/model.pth\", net_g, None)"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": null,
|
153 |
+
"metadata": {
|
154 |
+
"pycharm": {
|
155 |
+
"name": "#%%\n"
|
156 |
+
}
|
157 |
+
},
|
158 |
+
"outputs": [],
|
159 |
+
"source": [
|
160 |
+
"stn_tst = get_text(\"こんにちは\", hps)\n",
|
161 |
+
"with torch.no_grad():\n",
|
162 |
+
" x_tst = stn_tst.cuda().unsqueeze(0)\n",
|
163 |
+
" x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
|
164 |
+
" sid = torch.LongTensor([4]).cuda()\n",
|
165 |
+
" audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
|
166 |
+
"ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "markdown",
|
171 |
+
"metadata": {
|
172 |
+
"pycharm": {
|
173 |
+
"name": "#%% md\n"
|
174 |
+
}
|
175 |
+
},
|
176 |
+
"source": [
|
177 |
+
"### Voice Conversion"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": null,
|
183 |
+
"metadata": {
|
184 |
+
"pycharm": {
|
185 |
+
"name": "#%%\n"
|
186 |
+
}
|
187 |
+
},
|
188 |
+
"outputs": [],
|
189 |
+
"source": [
|
190 |
+
"dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)\n",
|
191 |
+
"collate_fn = TextAudioSpeakerCollate()\n",
|
192 |
+
"loader = DataLoader(dataset, num_workers=8, shuffle=False,\n",
|
193 |
+
" batch_size=1, pin_memory=True,\n",
|
194 |
+
" drop_last=True, collate_fn=collate_fn)\n",
|
195 |
+
"data_list = list(loader)"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": null,
|
201 |
+
"metadata": {
|
202 |
+
"pycharm": {
|
203 |
+
"name": "#%%\n"
|
204 |
+
}
|
205 |
+
},
|
206 |
+
"outputs": [],
|
207 |
+
"source": [
|
208 |
+
"with torch.no_grad():\n",
|
209 |
+
" x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda() for x in data_list[0]]\n",
|
210 |
+
" sid_tgt1 = torch.LongTensor([1]).cuda()\n",
|
211 |
+
" sid_tgt2 = torch.LongTensor([2]).cuda()\n",
|
212 |
+
" sid_tgt3 = torch.LongTensor([4]).cuda()\n",
|
213 |
+
" audio1 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data.cpu().float().numpy()\n",
|
214 |
+
" audio2 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt2)[0][0,0].data.cpu().float().numpy()\n",
|
215 |
+
" audio3 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt3)[0][0,0].data.cpu().float().numpy()\n",
|
216 |
+
"print(\"Original SID: %d\" % sid_src.item())\n",
|
217 |
+
"ipd.display(ipd.Audio(y[0].cpu().numpy(), rate=hps.data.sampling_rate, normalize=False))\n",
|
218 |
+
"print(\"Converted SID: %d\" % sid_tgt1.item())\n",
|
219 |
+
"ipd.display(ipd.Audio(audio1, rate=hps.data.sampling_rate, normalize=False))\n",
|
220 |
+
"print(\"Converted SID: %d\" % sid_tgt2.item())\n",
|
221 |
+
"ipd.display(ipd.Audio(audio2, rate=hps.data.sampling_rate, normalize=False))\n",
|
222 |
+
"print(\"Converted SID: %d\" % sid_tgt3.item())\n",
|
223 |
+
"ipd.display(ipd.Audio(audio3, rate=hps.data.sampling_rate, normalize=False))"
|
224 |
+
]
|
225 |
+
}
|
226 |
+
],
|
227 |
+
"metadata": {
|
228 |
+
"kernelspec": {
|
229 |
+
"display_name": "Python 3.7.9 64-bit",
|
230 |
+
"language": "python",
|
231 |
+
"name": "python3"
|
232 |
+
},
|
233 |
+
"language_info": {
|
234 |
+
"codemirror_mode": {
|
235 |
+
"name": "ipython",
|
236 |
+
"version": 3
|
237 |
+
},
|
238 |
+
"file_extension": ".py",
|
239 |
+
"mimetype": "text/x-python",
|
240 |
+
"name": "python",
|
241 |
+
"nbconvert_exporter": "python",
|
242 |
+
"pygments_lexer": "ipython3",
|
243 |
+
"version": "3.7.9"
|
244 |
+
},
|
245 |
+
"vscode": {
|
246 |
+
"interpreter": {
|
247 |
+
"hash": "c15292341d300295ca9f634d04c483f667a0c1d5ee0c309c2ac4e312cce8b8df"
|
248 |
+
}
|
249 |
+
}
|
250 |
+
},
|
251 |
+
"nbformat": 4,
|
252 |
+
"nbformat_minor": 4
|
253 |
+
}
|
losses.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import commons
|
5 |
+
|
6 |
+
|
7 |
+
def feature_loss(fmap_r, fmap_g):
|
8 |
+
loss = 0
|
9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
+
for rl, gl in zip(dr, dg):
|
11 |
+
rl = rl.float().detach()
|
12 |
+
gl = gl.float()
|
13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
14 |
+
|
15 |
+
return loss * 2
|
16 |
+
|
17 |
+
|
18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
+
loss = 0
|
20 |
+
r_losses = []
|
21 |
+
g_losses = []
|
22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
+
dr = dr.float()
|
24 |
+
dg = dg.float()
|
25 |
+
r_loss = torch.mean((1-dr)**2)
|
26 |
+
g_loss = torch.mean(dg**2)
|
27 |
+
loss += (r_loss + g_loss)
|
28 |
+
r_losses.append(r_loss.item())
|
29 |
+
g_losses.append(g_loss.item())
|
30 |
+
|
31 |
+
return loss, r_losses, g_losses
|
32 |
+
|
33 |
+
|
34 |
+
def generator_loss(disc_outputs):
|
35 |
+
loss = 0
|
36 |
+
gen_losses = []
|
37 |
+
for dg in disc_outputs:
|
38 |
+
dg = dg.float()
|
39 |
+
l = torch.mean((1-dg)**2)
|
40 |
+
gen_losses.append(l)
|
41 |
+
loss += l
|
42 |
+
|
43 |
+
return loss, gen_losses
|
44 |
+
|
45 |
+
|
46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
+
"""
|
48 |
+
z_p, logs_q: [b, h, t_t]
|
49 |
+
m_p, logs_p: [b, h, t_t]
|
50 |
+
"""
|
51 |
+
z_p = z_p.float()
|
52 |
+
logs_q = logs_q.float()
|
53 |
+
m_p = m_p.float()
|
54 |
+
logs_p = logs_p.float()
|
55 |
+
z_mask = z_mask.float()
|
56 |
+
|
57 |
+
kl = logs_p - logs_q - 0.5
|
58 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
59 |
+
kl = torch.sum(kl * z_mask)
|
60 |
+
l = kl / torch.sum(z_mask)
|
61 |
+
return l
|
mel_processing.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.data
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
import librosa.util as librosa_util
|
11 |
+
from librosa.util import normalize, pad_center, tiny
|
12 |
+
from scipy.signal import get_window
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
|
16 |
+
MAX_WAV_VALUE = 32768.0
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
+
"""
|
21 |
+
PARAMS
|
22 |
+
------
|
23 |
+
C: compression factor
|
24 |
+
"""
|
25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
+
|
27 |
+
|
28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
29 |
+
"""
|
30 |
+
PARAMS
|
31 |
+
------
|
32 |
+
C: compression factor used to compress
|
33 |
+
"""
|
34 |
+
return torch.exp(x) / C
|
35 |
+
|
36 |
+
|
37 |
+
def spectral_normalize_torch(magnitudes):
|
38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
39 |
+
return output
|
40 |
+
|
41 |
+
|
42 |
+
def spectral_de_normalize_torch(magnitudes):
|
43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
mel_basis = {}
|
48 |
+
hann_window = {}
|
49 |
+
|
50 |
+
|
51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
+
if torch.min(y) < -1.:
|
53 |
+
print('min value is ', torch.min(y))
|
54 |
+
if torch.max(y) > 1.:
|
55 |
+
print('max value is ', torch.max(y))
|
56 |
+
|
57 |
+
global hann_window
|
58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
+
if wnsize_dtype_device not in hann_window:
|
61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
+
|
63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
+
y = y.squeeze(1)
|
65 |
+
|
66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
68 |
+
|
69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
+
return spec
|
71 |
+
|
72 |
+
|
73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
+
global mel_basis
|
75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
+
if fmax_dtype_device not in mel_basis:
|
78 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
+
spec = spectral_normalize_torch(spec)
|
82 |
+
return spec
|
83 |
+
|
84 |
+
|
85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
+
if torch.min(y) < -1.:
|
87 |
+
print('min value is ', torch.min(y))
|
88 |
+
if torch.max(y) > 1.:
|
89 |
+
print('max value is ', torch.max(y))
|
90 |
+
|
91 |
+
global mel_basis, hann_window
|
92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
+
if fmax_dtype_device not in mel_basis:
|
96 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
+
if wnsize_dtype_device not in hann_window:
|
99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
+
|
101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
+
y = y.squeeze(1)
|
103 |
+
|
104 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
106 |
+
|
107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
+
|
109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
+
spec = spectral_normalize_torch(spec)
|
111 |
+
|
112 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
import modules
|
9 |
+
import attentions
|
10 |
+
import monotonic_align
|
11 |
+
|
12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
|
16 |
+
|
17 |
+
class StochasticDurationPredictor(nn.Module):
|
18 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
19 |
+
super().__init__()
|
20 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
21 |
+
self.in_channels = in_channels
|
22 |
+
self.filter_channels = filter_channels
|
23 |
+
self.kernel_size = kernel_size
|
24 |
+
self.p_dropout = p_dropout
|
25 |
+
self.n_flows = n_flows
|
26 |
+
self.gin_channels = gin_channels
|
27 |
+
|
28 |
+
self.log_flow = modules.Log()
|
29 |
+
self.flows = nn.ModuleList()
|
30 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
31 |
+
for i in range(n_flows):
|
32 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
33 |
+
self.flows.append(modules.Flip())
|
34 |
+
|
35 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
36 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
37 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
38 |
+
self.post_flows = nn.ModuleList()
|
39 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
40 |
+
for i in range(4):
|
41 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
42 |
+
self.post_flows.append(modules.Flip())
|
43 |
+
|
44 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
45 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
46 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
47 |
+
if gin_channels != 0:
|
48 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
49 |
+
|
50 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
51 |
+
x = torch.detach(x)
|
52 |
+
x = self.pre(x)
|
53 |
+
if g is not None:
|
54 |
+
g = torch.detach(g)
|
55 |
+
x = x + self.cond(g)
|
56 |
+
x = self.convs(x, x_mask)
|
57 |
+
x = self.proj(x) * x_mask
|
58 |
+
|
59 |
+
if not reverse:
|
60 |
+
flows = self.flows
|
61 |
+
assert w is not None
|
62 |
+
|
63 |
+
logdet_tot_q = 0
|
64 |
+
h_w = self.post_pre(w)
|
65 |
+
h_w = self.post_convs(h_w, x_mask)
|
66 |
+
h_w = self.post_proj(h_w) * x_mask
|
67 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
68 |
+
z_q = e_q
|
69 |
+
for flow in self.post_flows:
|
70 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
71 |
+
logdet_tot_q += logdet_q
|
72 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
73 |
+
u = torch.sigmoid(z_u) * x_mask
|
74 |
+
z0 = (w - u) * x_mask
|
75 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
76 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
77 |
+
|
78 |
+
logdet_tot = 0
|
79 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
80 |
+
logdet_tot += logdet
|
81 |
+
z = torch.cat([z0, z1], 1)
|
82 |
+
for flow in flows:
|
83 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
84 |
+
logdet_tot = logdet_tot + logdet
|
85 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
86 |
+
return nll + logq # [b]
|
87 |
+
else:
|
88 |
+
flows = list(reversed(self.flows))
|
89 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
90 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
91 |
+
for flow in flows:
|
92 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
93 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
94 |
+
logw = z0
|
95 |
+
return logw
|
96 |
+
|
97 |
+
|
98 |
+
class DurationPredictor(nn.Module):
|
99 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
self.in_channels = in_channels
|
103 |
+
self.filter_channels = filter_channels
|
104 |
+
self.kernel_size = kernel_size
|
105 |
+
self.p_dropout = p_dropout
|
106 |
+
self.gin_channels = gin_channels
|
107 |
+
|
108 |
+
self.drop = nn.Dropout(p_dropout)
|
109 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
110 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
111 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
112 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
113 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
114 |
+
|
115 |
+
if gin_channels != 0:
|
116 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, g=None):
|
119 |
+
x = torch.detach(x)
|
120 |
+
if g is not None:
|
121 |
+
g = torch.detach(g)
|
122 |
+
x = x + self.cond(g)
|
123 |
+
x = self.conv_1(x * x_mask)
|
124 |
+
x = torch.relu(x)
|
125 |
+
x = self.norm_1(x)
|
126 |
+
x = self.drop(x)
|
127 |
+
x = self.conv_2(x * x_mask)
|
128 |
+
x = torch.relu(x)
|
129 |
+
x = self.norm_2(x)
|
130 |
+
x = self.drop(x)
|
131 |
+
x = self.proj(x * x_mask)
|
132 |
+
return x * x_mask
|
133 |
+
|
134 |
+
|
135 |
+
class TextEncoder(nn.Module):
|
136 |
+
def __init__(self,
|
137 |
+
n_vocab,
|
138 |
+
out_channels,
|
139 |
+
hidden_channels,
|
140 |
+
filter_channels,
|
141 |
+
n_heads,
|
142 |
+
n_layers,
|
143 |
+
kernel_size,
|
144 |
+
p_dropout):
|
145 |
+
super().__init__()
|
146 |
+
self.n_vocab = n_vocab
|
147 |
+
self.out_channels = out_channels
|
148 |
+
self.hidden_channels = hidden_channels
|
149 |
+
self.filter_channels = filter_channels
|
150 |
+
self.n_heads = n_heads
|
151 |
+
self.n_layers = n_layers
|
152 |
+
self.kernel_size = kernel_size
|
153 |
+
self.p_dropout = p_dropout
|
154 |
+
|
155 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
156 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
157 |
+
|
158 |
+
self.encoder = attentions.Encoder(
|
159 |
+
hidden_channels,
|
160 |
+
filter_channels,
|
161 |
+
n_heads,
|
162 |
+
n_layers,
|
163 |
+
kernel_size,
|
164 |
+
p_dropout)
|
165 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
166 |
+
|
167 |
+
def forward(self, x, x_lengths):
|
168 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
169 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
171 |
+
|
172 |
+
x = self.encoder(x * x_mask, x_mask)
|
173 |
+
stats = self.proj(x) * x_mask
|
174 |
+
|
175 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
176 |
+
return x, m, logs, x_mask
|
177 |
+
|
178 |
+
|
179 |
+
class ResidualCouplingBlock(nn.Module):
|
180 |
+
def __init__(self,
|
181 |
+
channels,
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
n_flows=4,
|
187 |
+
gin_channels=0):
|
188 |
+
super().__init__()
|
189 |
+
self.channels = channels
|
190 |
+
self.hidden_channels = hidden_channels
|
191 |
+
self.kernel_size = kernel_size
|
192 |
+
self.dilation_rate = dilation_rate
|
193 |
+
self.n_layers = n_layers
|
194 |
+
self.n_flows = n_flows
|
195 |
+
self.gin_channels = gin_channels
|
196 |
+
|
197 |
+
self.flows = nn.ModuleList()
|
198 |
+
for i in range(n_flows):
|
199 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
200 |
+
self.flows.append(modules.Flip())
|
201 |
+
|
202 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
203 |
+
if not reverse:
|
204 |
+
for flow in self.flows:
|
205 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
206 |
+
else:
|
207 |
+
for flow in reversed(self.flows):
|
208 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
209 |
+
return x
|
210 |
+
|
211 |
+
|
212 |
+
class PosteriorEncoder(nn.Module):
|
213 |
+
def __init__(self,
|
214 |
+
in_channels,
|
215 |
+
out_channels,
|
216 |
+
hidden_channels,
|
217 |
+
kernel_size,
|
218 |
+
dilation_rate,
|
219 |
+
n_layers,
|
220 |
+
gin_channels=0):
|
221 |
+
super().__init__()
|
222 |
+
self.in_channels = in_channels
|
223 |
+
self.out_channels = out_channels
|
224 |
+
self.hidden_channels = hidden_channels
|
225 |
+
self.kernel_size = kernel_size
|
226 |
+
self.dilation_rate = dilation_rate
|
227 |
+
self.n_layers = n_layers
|
228 |
+
self.gin_channels = gin_channels
|
229 |
+
|
230 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
231 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
232 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
233 |
+
|
234 |
+
def forward(self, x, x_lengths, g=None):
|
235 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
236 |
+
x = self.pre(x) * x_mask
|
237 |
+
x = self.enc(x, x_mask, g=g)
|
238 |
+
stats = self.proj(x) * x_mask
|
239 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
240 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
241 |
+
return z, m, logs, x_mask
|
242 |
+
|
243 |
+
|
244 |
+
class Generator(torch.nn.Module):
|
245 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
246 |
+
super(Generator, self).__init__()
|
247 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
248 |
+
self.num_upsamples = len(upsample_rates)
|
249 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
250 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
251 |
+
|
252 |
+
self.ups = nn.ModuleList()
|
253 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
254 |
+
self.ups.append(weight_norm(
|
255 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
256 |
+
k, u, padding=(k-u)//2)))
|
257 |
+
|
258 |
+
self.resblocks = nn.ModuleList()
|
259 |
+
for i in range(len(self.ups)):
|
260 |
+
ch = upsample_initial_channel//(2**(i+1))
|
261 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
262 |
+
self.resblocks.append(resblock(ch, k, d))
|
263 |
+
|
264 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
265 |
+
self.ups.apply(init_weights)
|
266 |
+
|
267 |
+
if gin_channels != 0:
|
268 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
269 |
+
|
270 |
+
def forward(self, x, g=None):
|
271 |
+
x = self.conv_pre(x)
|
272 |
+
if g is not None:
|
273 |
+
x = x + self.cond(g)
|
274 |
+
|
275 |
+
for i in range(self.num_upsamples):
|
276 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
277 |
+
x = self.ups[i](x)
|
278 |
+
xs = None
|
279 |
+
for j in range(self.num_kernels):
|
280 |
+
if xs is None:
|
281 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
282 |
+
else:
|
283 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
284 |
+
x = xs / self.num_kernels
|
285 |
+
x = F.leaky_relu(x)
|
286 |
+
x = self.conv_post(x)
|
287 |
+
x = torch.tanh(x)
|
288 |
+
|
289 |
+
return x
|
290 |
+
|
291 |
+
def remove_weight_norm(self):
|
292 |
+
print('Removing weight norm...')
|
293 |
+
for l in self.ups:
|
294 |
+
remove_weight_norm(l)
|
295 |
+
for l in self.resblocks:
|
296 |
+
l.remove_weight_norm()
|
297 |
+
|
298 |
+
|
299 |
+
class DiscriminatorP(torch.nn.Module):
|
300 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
301 |
+
super(DiscriminatorP, self).__init__()
|
302 |
+
self.period = period
|
303 |
+
self.use_spectral_norm = use_spectral_norm
|
304 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
305 |
+
self.convs = nn.ModuleList([
|
306 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
307 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
308 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
309 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
310 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
311 |
+
])
|
312 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
fmap = []
|
316 |
+
|
317 |
+
# 1d to 2d
|
318 |
+
b, c, t = x.shape
|
319 |
+
if t % self.period != 0: # pad first
|
320 |
+
n_pad = self.period - (t % self.period)
|
321 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
322 |
+
t = t + n_pad
|
323 |
+
x = x.view(b, c, t // self.period, self.period)
|
324 |
+
|
325 |
+
for l in self.convs:
|
326 |
+
x = l(x)
|
327 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
328 |
+
fmap.append(x)
|
329 |
+
x = self.conv_post(x)
|
330 |
+
fmap.append(x)
|
331 |
+
x = torch.flatten(x, 1, -1)
|
332 |
+
|
333 |
+
return x, fmap
|
334 |
+
|
335 |
+
|
336 |
+
class DiscriminatorS(torch.nn.Module):
|
337 |
+
def __init__(self, use_spectral_norm=False):
|
338 |
+
super(DiscriminatorS, self).__init__()
|
339 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
340 |
+
self.convs = nn.ModuleList([
|
341 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
342 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
343 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
344 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
345 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
346 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
347 |
+
])
|
348 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
349 |
+
|
350 |
+
def forward(self, x):
|
351 |
+
fmap = []
|
352 |
+
|
353 |
+
for l in self.convs:
|
354 |
+
x = l(x)
|
355 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
356 |
+
fmap.append(x)
|
357 |
+
x = self.conv_post(x)
|
358 |
+
fmap.append(x)
|
359 |
+
x = torch.flatten(x, 1, -1)
|
360 |
+
|
361 |
+
return x, fmap
|
362 |
+
|
363 |
+
|
364 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
365 |
+
def __init__(self, use_spectral_norm=False):
|
366 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
367 |
+
periods = [2,3,5,7,11]
|
368 |
+
|
369 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
370 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
371 |
+
self.discriminators = nn.ModuleList(discs)
|
372 |
+
|
373 |
+
def forward(self, y, y_hat):
|
374 |
+
y_d_rs = []
|
375 |
+
y_d_gs = []
|
376 |
+
fmap_rs = []
|
377 |
+
fmap_gs = []
|
378 |
+
for i, d in enumerate(self.discriminators):
|
379 |
+
y_d_r, fmap_r = d(y)
|
380 |
+
y_d_g, fmap_g = d(y_hat)
|
381 |
+
y_d_rs.append(y_d_r)
|
382 |
+
y_d_gs.append(y_d_g)
|
383 |
+
fmap_rs.append(fmap_r)
|
384 |
+
fmap_gs.append(fmap_g)
|
385 |
+
|
386 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
class SynthesizerTrn(nn.Module):
|
391 |
+
"""
|
392 |
+
Synthesizer for Training
|
393 |
+
"""
|
394 |
+
|
395 |
+
def __init__(self,
|
396 |
+
n_vocab,
|
397 |
+
spec_channels,
|
398 |
+
segment_size,
|
399 |
+
inter_channels,
|
400 |
+
hidden_channels,
|
401 |
+
filter_channels,
|
402 |
+
n_heads,
|
403 |
+
n_layers,
|
404 |
+
kernel_size,
|
405 |
+
p_dropout,
|
406 |
+
resblock,
|
407 |
+
resblock_kernel_sizes,
|
408 |
+
resblock_dilation_sizes,
|
409 |
+
upsample_rates,
|
410 |
+
upsample_initial_channel,
|
411 |
+
upsample_kernel_sizes,
|
412 |
+
n_speakers=0,
|
413 |
+
gin_channels=0,
|
414 |
+
use_sdp=True,
|
415 |
+
**kwargs):
|
416 |
+
|
417 |
+
super().__init__()
|
418 |
+
self.n_vocab = n_vocab
|
419 |
+
self.spec_channels = spec_channels
|
420 |
+
self.inter_channels = inter_channels
|
421 |
+
self.hidden_channels = hidden_channels
|
422 |
+
self.filter_channels = filter_channels
|
423 |
+
self.n_heads = n_heads
|
424 |
+
self.n_layers = n_layers
|
425 |
+
self.kernel_size = kernel_size
|
426 |
+
self.p_dropout = p_dropout
|
427 |
+
self.resblock = resblock
|
428 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
429 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
430 |
+
self.upsample_rates = upsample_rates
|
431 |
+
self.upsample_initial_channel = upsample_initial_channel
|
432 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
433 |
+
self.segment_size = segment_size
|
434 |
+
self.n_speakers = n_speakers
|
435 |
+
self.gin_channels = gin_channels
|
436 |
+
|
437 |
+
self.use_sdp = use_sdp
|
438 |
+
|
439 |
+
self.enc_p = TextEncoder(n_vocab,
|
440 |
+
inter_channels,
|
441 |
+
hidden_channels,
|
442 |
+
filter_channels,
|
443 |
+
n_heads,
|
444 |
+
n_layers,
|
445 |
+
kernel_size,
|
446 |
+
p_dropout)
|
447 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
448 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
449 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
450 |
+
|
451 |
+
if use_sdp:
|
452 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
453 |
+
else:
|
454 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
455 |
+
|
456 |
+
if n_speakers > 1:
|
457 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
458 |
+
|
459 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
460 |
+
|
461 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
462 |
+
if self.n_speakers > 0:
|
463 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
464 |
+
else:
|
465 |
+
g = None
|
466 |
+
|
467 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
468 |
+
z_p = self.flow(z, y_mask, g=g)
|
469 |
+
|
470 |
+
with torch.no_grad():
|
471 |
+
# negative cross-entropy
|
472 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
473 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
474 |
+
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
475 |
+
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
476 |
+
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
477 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
478 |
+
|
479 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
480 |
+
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
481 |
+
|
482 |
+
w = attn.sum(2)
|
483 |
+
if self.use_sdp:
|
484 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
485 |
+
l_length = l_length / torch.sum(x_mask)
|
486 |
+
else:
|
487 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
488 |
+
logw = self.dp(x, x_mask, g=g)
|
489 |
+
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
490 |
+
|
491 |
+
# expand prior
|
492 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
493 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
494 |
+
|
495 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
496 |
+
o = self.dec(z_slice, g=g)
|
497 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
498 |
+
|
499 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
500 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
501 |
+
if self.n_speakers > 0:
|
502 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
503 |
+
else:
|
504 |
+
g = None
|
505 |
+
|
506 |
+
if self.use_sdp:
|
507 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
508 |
+
else:
|
509 |
+
logw = self.dp(x, x_mask, g=g)
|
510 |
+
w = torch.exp(logw) * x_mask * length_scale
|
511 |
+
w_ceil = torch.ceil(w)
|
512 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
513 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
514 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
515 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
516 |
+
|
517 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
518 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
519 |
+
|
520 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
521 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
522 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
523 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
524 |
+
|
525 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
526 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
527 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
528 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
529 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
530 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
531 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
532 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
533 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
534 |
+
|
models/aru/aru.png
ADDED
models/aru/aru.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0caa5490199588c9f850afbaa8dfac92b0d20b2b78b5bdb4a4a50d5018c4cb4
|
3 |
+
size 479268167
|
models/config.json
ADDED
@@ -0,0 +1,948 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 600,
|
7 |
+
"learning_rate": 0.0002,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 16,
|
14 |
+
"fp16_run": true,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 8192,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0
|
21 |
+
},
|
22 |
+
"data": {
|
23 |
+
"training_files": "/content/vits-finetuning/filelists/haruka_train.txt.cleaned",
|
24 |
+
"validation_files": "/content/vits-finetuning/filelists/haruka_val.txt.cleaned",
|
25 |
+
"text_cleaners": [
|
26 |
+
"japanese_cleaners"
|
27 |
+
],
|
28 |
+
"max_wav_value": 32768.0,
|
29 |
+
"sampling_rate": 22050,
|
30 |
+
"filter_length": 1024,
|
31 |
+
"hop_length": 256,
|
32 |
+
"win_length": 1024,
|
33 |
+
"n_mel_channels": 80,
|
34 |
+
"mel_fmin": 0.0,
|
35 |
+
"mel_fmax": null,
|
36 |
+
"add_blank": true,
|
37 |
+
"n_speakers": 804,
|
38 |
+
"cleaned_text": true
|
39 |
+
},
|
40 |
+
"model": {
|
41 |
+
"inter_channels": 192,
|
42 |
+
"hidden_channels": 192,
|
43 |
+
"filter_channels": 768,
|
44 |
+
"n_heads": 2,
|
45 |
+
"n_layers": 6,
|
46 |
+
"kernel_size": 3,
|
47 |
+
"p_dropout": 0.1,
|
48 |
+
"resblock": "1",
|
49 |
+
"resblock_kernel_sizes": [
|
50 |
+
3,
|
51 |
+
7,
|
52 |
+
11
|
53 |
+
],
|
54 |
+
"resblock_dilation_sizes": [
|
55 |
+
[
|
56 |
+
1,
|
57 |
+
3,
|
58 |
+
5
|
59 |
+
],
|
60 |
+
[
|
61 |
+
1,
|
62 |
+
3,
|
63 |
+
5
|
64 |
+
],
|
65 |
+
[
|
66 |
+
1,
|
67 |
+
3,
|
68 |
+
5
|
69 |
+
]
|
70 |
+
],
|
71 |
+
"upsample_rates": [
|
72 |
+
8,
|
73 |
+
8,
|
74 |
+
2,
|
75 |
+
2
|
76 |
+
],
|
77 |
+
"upsample_initial_channel": 512,
|
78 |
+
"upsample_kernel_sizes": [
|
79 |
+
16,
|
80 |
+
16,
|
81 |
+
4,
|
82 |
+
4
|
83 |
+
],
|
84 |
+
"n_layers_q": 3,
|
85 |
+
"use_spectral_norm": false,
|
86 |
+
"gin_channels": 256
|
87 |
+
},
|
88 |
+
"speakers": [
|
89 |
+
"\u7279\u522b\u5468",
|
90 |
+
"\u65e0\u58f0\u94c3\u9e7f",
|
91 |
+
"\u4e1c\u6d77\u5e1d\u7687\uff08\u5e1d\u5b9d\uff0c\u5e1d\u738b\uff09",
|
92 |
+
"\u4e38\u5584\u65af\u57fa",
|
93 |
+
"\u5bcc\u58eb\u5947\u8ff9",
|
94 |
+
"\u5c0f\u6817\u5e3d",
|
95 |
+
"\u9ec4\u91d1\u8239",
|
96 |
+
"\u4f0f\u7279\u52a0",
|
97 |
+
"\u5927\u548c\u8d64\u9aa5",
|
98 |
+
"\u5927\u6811\u5feb\u8f66",
|
99 |
+
"\u8349\u4e0a\u98de",
|
100 |
+
"\u83f1\u4e9a\u9a6c\u900a",
|
101 |
+
"\u76ee\u767d\u9ea6\u6606",
|
102 |
+
"\u795e\u9e70",
|
103 |
+
"\u597d\u6b4c\u5267",
|
104 |
+
"\u6210\u7530\u767d\u4ec1",
|
105 |
+
"\u9c81\u9053\u592b\u8c61\u5f81\uff08\u7687\u5e1d\uff09",
|
106 |
+
"\u6c14\u69fd",
|
107 |
+
"\u7231\u4e3d\u6570\u7801",
|
108 |
+
"\u661f\u4e91\u5929\u7a7a",
|
109 |
+
"\u7389\u85fb\u5341\u5b57",
|
110 |
+
"\u7f8e\u5999\u59ff\u52bf",
|
111 |
+
"\u7435\u7436\u6668\u5149",
|
112 |
+
"\u6469\u8036\u91cd\u70ae",
|
113 |
+
"\u66fc\u57ce\u8336\u5ea7",
|
114 |
+
"\u7f8e\u6d66\u6ce2\u65c1",
|
115 |
+
"\u76ee\u767d\u8d56\u6069",
|
116 |
+
"\u83f1\u66d9",
|
117 |
+
"\u96ea\u4e2d\u7f8e\u4eba",
|
118 |
+
"\u7c73\u6d74",
|
119 |
+
"\u827e\u5c3c\u65af\u98ce\u795e",
|
120 |
+
"\u7231\u4e3d\u901f\u5b50\uff08\u7231\u4e3d\u5feb\u5b50\uff09",
|
121 |
+
"\u7231\u6155\u7ec7\u59ec",
|
122 |
+
"\u7a3b\u8377\u4e00",
|
123 |
+
"\u80dc\u5229\u5956\u5238",
|
124 |
+
"\u7a7a\u4e2d\u795e\u5bab",
|
125 |
+
"\u8363\u8fdb\u95ea\u8000",
|
126 |
+
"\u771f\u673a\u4f36",
|
127 |
+
"\u5ddd\u4e0a\u516c\u4e3b",
|
128 |
+
"\u9ec4\u91d1\u57ce\uff08\u9ec4\u91d1\u57ce\u5e02\uff09",
|
129 |
+
"\u6a31\u82b1\u8fdb\u738b",
|
130 |
+
"\u91c7\u73e0",
|
131 |
+
"\u65b0\u5149\u98ce",
|
132 |
+
"\u4e1c\u5546\u53d8\u9769",
|
133 |
+
"\u8d85\u7ea7\u5c0f\u6d77\u6e7e",
|
134 |
+
"\u9192\u76ee\u98de\u9e70\uff08\u5bc4\u5bc4\u5b50\uff09",
|
135 |
+
"\u8352\u6f20\u82f1\u96c4",
|
136 |
+
"\u4e1c\u701b\u4f50\u6566",
|
137 |
+
"\u4e2d\u5c71\u5e86\u5178",
|
138 |
+
"\u6210\u7530\u5927\u8fdb",
|
139 |
+
"\u897f\u91ce\u82b1",
|
140 |
+
"\u6625\u4e3d\uff08\u4e4c\u62c9\u62c9\uff09",
|
141 |
+
"\u9752\u7af9\u56de\u5fc6",
|
142 |
+
"\u5fae\u5149\u98de\u9a79",
|
143 |
+
"\u7f8e\u4e3d\u5468\u65e5",
|
144 |
+
"\u5f85\u517c\u798f\u6765",
|
145 |
+
"mr cb\uff08cb\u5148\u751f\uff09",
|
146 |
+
"\u540d\u5c06\u6012\u6d9b\uff08\u540d\u5c06\u6237\u4ec1\uff09",
|
147 |
+
"\u76ee\u767d\u591a\u4f2f",
|
148 |
+
"\u4f18\u79c0\u7d20\u8d28",
|
149 |
+
"\u5e1d\u738b\u5149\u8f89",
|
150 |
+
"\u5f85\u517c\u8bd7\u6b4c\u5267",
|
151 |
+
"\u751f\u91ce\u72c4\u675c\u65af",
|
152 |
+
"\u76ee\u767d\u5584\u4fe1",
|
153 |
+
"\u5927\u62d3\u592a\u9633\u795e",
|
154 |
+
"\u53cc\u6da1\u8f6e\uff08\u4e24\u7acb\u76f4\uff0c\u4e24\u55b7\u5c04\uff0c\u4e8c\u9505\u5934\uff0c\u9006\u55b7\u5c04\uff09",
|
155 |
+
"\u91cc\u89c1\u5149\u94bb\uff08\u8428\u6258\u8bfa\u91d1\u521a\u77f3\uff09",
|
156 |
+
"\u5317\u90e8\u7384\u9a79",
|
157 |
+
"\u6a31\u82b1\u5343\u4ee3\u738b",
|
158 |
+
"\u5929\u72fc\u661f\u8c61\u5f81",
|
159 |
+
"\u76ee\u767d\u963f\u5c14\u4e39",
|
160 |
+
"\u516b\u91cd\u65e0\u654c",
|
161 |
+
"\u9e64\u4e38\u521a\u5fd7",
|
162 |
+
"\u76ee\u767d\u5149\u660e",
|
163 |
+
"\u6210\u7530\u62dc\u4ec1\uff08\u6210\u7530\u8def\uff09",
|
164 |
+
"\u4e5f\u6587\u6444\u8f89",
|
165 |
+
"\u5c0f\u6797\u5386\u5947",
|
166 |
+
"\u5317\u6e2f\u706b\u5c71",
|
167 |
+
"\u5947\u9510\u9a8f",
|
168 |
+
"\u82e6\u6da9\u7cd6\u971c",
|
169 |
+
"\u5c0f\u5c0f\u8695\u8327",
|
170 |
+
"\u9a8f\u5ddd\u624b\u7eb2\uff08\u7eff\u5e3d\u6076\u9b54\uff09",
|
171 |
+
"\u79cb\u5ddd\u5f25\u751f\uff08\u5c0f\u5c0f\u7406\u4e8b\u957f\uff09",
|
172 |
+
"\u4e59\u540d\u53f2\u60a6\u5b50\uff08\u4e59\u540d\u8bb0\u8005\uff09",
|
173 |
+
"\u6850\u751f\u9662\u8475",
|
174 |
+
"\u5b89\u5fc3\u6cfd\u523a\u523a\u7f8e",
|
175 |
+
"\u6a2b\u672c\u7406\u5b50",
|
176 |
+
"\u795e\u91cc\u7eeb\u534e\uff08\u9f9f\u9f9f\uff09",
|
177 |
+
"\u7434",
|
178 |
+
"\u7a7a\uff08\u7a7a\u54e5\uff09",
|
179 |
+
"\u4e3d\u838e",
|
180 |
+
"\u8367\uff08\u8367\u59b9\uff09",
|
181 |
+
"\u82ad\u82ad\u62c9",
|
182 |
+
"\u51ef\u4e9a",
|
183 |
+
"\u8fea\u5362\u514b",
|
184 |
+
"\u96f7\u6cfd",
|
185 |
+
"\u5b89\u67cf",
|
186 |
+
"\u6e29\u8fea",
|
187 |
+
"\u9999\u83f1",
|
188 |
+
"\u5317\u6597",
|
189 |
+
"\u884c\u79cb",
|
190 |
+
"\u9b48",
|
191 |
+
"\u51dd\u5149",
|
192 |
+
"\u53ef\u8389",
|
193 |
+
"\u949f\u79bb",
|
194 |
+
"\u83f2\u8c22\u5c14\uff08\u7687\u5973\uff09",
|
195 |
+
"\u73ed\u5c3c\u7279",
|
196 |
+
"\u8fbe\u8fbe\u5229\u4e9a\uff08\u516c\u5b50\uff09",
|
197 |
+
"\u8bfa\u827e\u5c14\uff08\u5973\u4ec6\uff09",
|
198 |
+
"\u4e03\u4e03",
|
199 |
+
"\u91cd\u4e91",
|
200 |
+
"\u7518\u96e8\uff08\u6930\u7f8a\uff09",
|
201 |
+
"\u963f\u8d1d\u591a",
|
202 |
+
"\u8fea\u5965\u5a1c\uff08\u732b\u732b\uff09",
|
203 |
+
"\u83ab\u5a1c",
|
204 |
+
"\u523b\u6674",
|
205 |
+
"\u7802\u7cd6",
|
206 |
+
"\u8f9b\u7131",
|
207 |
+
"\u7f57\u838e\u8389\u4e9a",
|
208 |
+
"\u80e1\u6843",
|
209 |
+
"\u67ab\u539f\u4e07\u53f6\uff08\u4e07\u53f6\uff09",
|
210 |
+
"\u70df\u7eef",
|
211 |
+
"\u5bb5\u5bab",
|
212 |
+
"\u6258\u9a6c",
|
213 |
+
"\u4f18\u83c8",
|
214 |
+
"\u96f7\u7535\u5c06\u519b\uff08\u96f7\u795e\uff09",
|
215 |
+
"\u65e9\u67da",
|
216 |
+
"\u73ca\u745a\u5bab\u5fc3\u6d77\uff08\u5fc3\u6d77\uff0c\u6263\u6263\u7c73\uff09",
|
217 |
+
"\u4e94\u90ce",
|
218 |
+
"\u4e5d\u6761\u88df\u7f57",
|
219 |
+
"\u8352\u6cf7\u4e00\u6597\uff08\u4e00\u6597\uff09",
|
220 |
+
"\u57c3\u6d1b\u4f0a",
|
221 |
+
"\u7533\u9e64",
|
222 |
+
"\u516b\u91cd\u795e\u5b50\uff08\u795e\u5b50\uff09",
|
223 |
+
"\u795e\u91cc\u7eeb\u4eba\uff08\u7eeb\u4eba\uff09",
|
224 |
+
"\u591c\u5170",
|
225 |
+
"\u4e45\u5c90\u5fcd",
|
226 |
+
"\u9e7f\u91ce\u82d1\u5e73\u85cf",
|
227 |
+
"\u63d0\u7eb3\u91cc",
|
228 |
+
"\u67ef\u83b1",
|
229 |
+
"\u591a\u8389",
|
230 |
+
"\u4e91\u5807",
|
231 |
+
"\u7eb3\u897f\u59b2\uff08\u8349\u795e\uff09",
|
232 |
+
"\u6df1\u6e0a\u4f7f\u5f92",
|
233 |
+
"\u59ae\u9732",
|
234 |
+
"\u8d5b\u8bfa",
|
235 |
+
"\u503a\u52a1\u5904\u7406\u4eba",
|
236 |
+
"\u574e\u8482\u4e1d",
|
237 |
+
"\u771f\u5f13\u5feb\u8f66",
|
238 |
+
"\u79cb\u4eba",
|
239 |
+
"\u671b\u65cf",
|
240 |
+
"\u827e\u5c14\u83f2",
|
241 |
+
"\u827e\u8389\u4e1d",
|
242 |
+
"\u827e\u4f26",
|
243 |
+
"\u963f\u6d1b\u74e6",
|
244 |
+
"\u5929\u91ce",
|
245 |
+
"\u5929\u76ee\u5341\u4e94",
|
246 |
+
"\u611a\u4eba\u4f17-\u5b89\u5fb7\u70c8",
|
247 |
+
"\u5b89\u987a",
|
248 |
+
"\u5b89\u897f",
|
249 |
+
"\u8475",
|
250 |
+
"\u9752\u6728",
|
251 |
+
"\u8352\u5ddd\u5e78\u6b21",
|
252 |
+
"\u8352\u8c37",
|
253 |
+
"\u6709\u6cfd",
|
254 |
+
"\u6d45\u5ddd",
|
255 |
+
"\u9ebb\u7f8e",
|
256 |
+
"\u51dd\u5149\u52a9\u624b",
|
257 |
+
"\u963f\u6258",
|
258 |
+
"\u7afa\u5b50",
|
259 |
+
"\u767e\u8bc6",
|
260 |
+
"\u767e\u95fb",
|
261 |
+
"\u767e\u6653",
|
262 |
+
"\u767d\u672f",
|
263 |
+
"\u8d1d\u96c5\u7279\u4e3d\u5947",
|
264 |
+
"\u4e3d\u5854",
|
265 |
+
"\u5931\u843d\u8ff7\u8fed",
|
266 |
+
"\u7f2d\u4e71\u661f\u68d8",
|
267 |
+
"\u4f0a\u7538",
|
268 |
+
"\u4f0f\u7279\u52a0\u5973\u5b69",
|
269 |
+
"\u72c2\u70ed\u84dd\u8c03",
|
270 |
+
"\u8389\u8389\u5a05",
|
271 |
+
"\u841d\u838e\u8389\u5a05",
|
272 |
+
"\u516b\u91cd\u6a31",
|
273 |
+
"\u516b\u91cd\u971e",
|
274 |
+
"\u5361\u83b2",
|
275 |
+
"\u7b2c\u516d\u591c\u60f3\u66f2",
|
276 |
+
"\u5361\u841d\u5c14",
|
277 |
+
"\u59ec\u5b50",
|
278 |
+
"\u6781\u5730\u6218\u5203",
|
279 |
+
"\u5e03\u6d1b\u59ae\u5a05",
|
280 |
+
"\u6b21\u751f\u94f6\u7ffc",
|
281 |
+
"\u7406\u4e4b\u5f8b\u8005%26\u5e0c\u513f",
|
282 |
+
"\u7406\u4e4b\u5f8b\u8005",
|
283 |
+
"\u8ff7\u57ce\u9a87\u5154",
|
284 |
+
"\u5e0c\u513f",
|
285 |
+
"\u9b47\u591c\u661f\u6e0a",
|
286 |
+
"\u9ed1\u5e0c\u513f",
|
287 |
+
"\u5e15\u6735\u83f2\u8389\u4e1d",
|
288 |
+
"\u4e0d\u706d\u661f\u951a",
|
289 |
+
"\u5929\u5143\u9a91\u82f1",
|
290 |
+
"\u5e7d\u5170\u9edb\u5c14",
|
291 |
+
"\u6d3e\u8499bh3",
|
292 |
+
"\u7231\u9171",
|
293 |
+
"\u7eef\u7389\u4e38",
|
294 |
+
"\u5fb7\u4e3d\u838e",
|
295 |
+
"\u6708\u4e0b\u521d\u62e5",
|
296 |
+
"\u6714\u591c\u89c2\u661f",
|
297 |
+
"\u66ae\u5149\u9a91\u58eb",
|
298 |
+
"\u683c\u857e\u4fee",
|
299 |
+
"\u7559\u4e91\u501f\u98ce\u771f\u541b",
|
300 |
+
"\u6885\u6bd4\u4e4c\u65af",
|
301 |
+
"\u4eff\u72b9\u5927",
|
302 |
+
"\u514b\u83b1\u56e0",
|
303 |
+
"\u5723\u5251\u5e7d\u5170\u9edb\u5c14",
|
304 |
+
"\u5996\u7cbe\u7231\u8389",
|
305 |
+
"\u7279\u65af\u62c9zero",
|
306 |
+
"\u82cd\u7384",
|
307 |
+
"\u82e5\u6c34",
|
308 |
+
"\u897f\u7433",
|
309 |
+
"\u6234\u56e0\u65af\u96f7\u5e03",
|
310 |
+
"\u8d1d\u62c9",
|
311 |
+
"\u8d64\u9e22",
|
312 |
+
"\u9547\u9b42\u6b4c",
|
313 |
+
"\u6e21\u9e26",
|
314 |
+
"\u4eba\u4e4b\u5f8b\u8005",
|
315 |
+
"\u7231\u8389\u5e0c\u96c5",
|
316 |
+
"\u5929\u7a79\u6e38\u4fa0",
|
317 |
+
"\u742a\u4e9a\u5a1c",
|
318 |
+
"\u7a7a\u4e4b\u5f8b\u8005",
|
319 |
+
"\u85aa\u708e\u4e4b\u5f8b\u8005",
|
320 |
+
"\u4e91\u58a8\u4e39\u5fc3",
|
321 |
+
"\u7b26\u534e",
|
322 |
+
"\u8bc6\u4e4b\u5f8b\u8005",
|
323 |
+
"\u7279\u74e6\u6797",
|
324 |
+
"\u7ef4\u5c14\u8587",
|
325 |
+
"\u82bd\u8863",
|
326 |
+
"\u96f7\u4e4b\u5f8b\u8005",
|
327 |
+
"\u65ad\u7f6a\u5f71\u821e",
|
328 |
+
"\u963f\u6ce2\u5c3c\u4e9a",
|
329 |
+
"\u698e\u672c",
|
330 |
+
"\u5384\u5c3c\u65af\u7279",
|
331 |
+
"\u6076\u9f99",
|
332 |
+
"\u8303\u4e8c\u7237",
|
333 |
+
"\u6cd5\u62c9",
|
334 |
+
"\u611a\u4eba\u4f17\u58eb\u5175",
|
335 |
+
"\u611a\u4eba\u4f17\u58eb\u5175a",
|
336 |
+
"\u611a\u4eba\u4f17\u58eb\u5175b",
|
337 |
+
"\u611a\u4eba\u4f17\u58eb\u5175c",
|
338 |
+
"\u611a\u4eba\u4f17a",
|
339 |
+
"\u611a\u4eba\u4f17b",
|
340 |
+
"\u98de\u98de",
|
341 |
+
"\u83f2\u5229\u514b\u65af",
|
342 |
+
"\u5973\u6027\u8ddf\u968f\u8005",
|
343 |
+
"\u9022\u5ca9",
|
344 |
+
"\u6446\u6e21\u4eba",
|
345 |
+
"\u72c2\u8e81\u7684\u7537\u4eba",
|
346 |
+
"\u5965\u5179",
|
347 |
+
"\u8299\u841d\u62c9",
|
348 |
+
"\u8ddf\u968f\u8005",
|
349 |
+
"\u871c\u6c41\u751f\u7269",
|
350 |
+
"\u9ec4\u9ebb\u5b50",
|
351 |
+
"\u6e0a\u4e0a",
|
352 |
+
"\u85e4\u6728",
|
353 |
+
"\u6df1\u89c1",
|
354 |
+
"\u798f\u672c",
|
355 |
+
"\u8299\u84c9",
|
356 |
+
"\u53e4\u6cfd",
|
357 |
+
"\u53e4\u7530",
|
358 |
+
"\u53e4\u5c71",
|
359 |
+
"\u53e4\u8c37\u6607",
|
360 |
+
"\u5085\u4e09\u513f",
|
361 |
+
"\u9ad8\u8001\u516d",
|
362 |
+
"\u77ff\u5de5\u5192",
|
363 |
+
"\u5143\u592a",
|
364 |
+
"\u5fb7\u5b89\u516c",
|
365 |
+
"\u8302\u624d\u516c",
|
366 |
+
"\u6770\u62c9\u5fb7",
|
367 |
+
"\u845b\u7f57\u4e3d",
|
368 |
+
"\u91d1\u5ffd\u5f8b",
|
369 |
+
"\u516c\u4fca",
|
370 |
+
"\u9505\u5df4",
|
371 |
+
"\u6b4c\u5fb7",
|
372 |
+
"\u963f\u8c6a",
|
373 |
+
"\u72d7\u4e09\u513f",
|
374 |
+
"\u845b\u745e\u4e1d",
|
375 |
+
"\u82e5\u5fc3",
|
376 |
+
"\u963f\u5c71\u5a46",
|
377 |
+
"\u602a\u9e1f",
|
378 |
+
"\u5e7f\u7af9",
|
379 |
+
"\u89c2\u6d77",
|
380 |
+
"\u5173\u5b8f",
|
381 |
+
"\u871c\u6c41\u536b\u5175",
|
382 |
+
"\u5b88\u536b1",
|
383 |
+
"\u50b2\u6162\u7684\u5b88\u536b",
|
384 |
+
"\u5bb3\u6015\u7684\u5b88\u536b",
|
385 |
+
"\u8d35\u5b89",
|
386 |
+
"\u76d6\u4f0a",
|
387 |
+
"\u963f\u521b",
|
388 |
+
"\u54c8\u592b\u4e39",
|
389 |
+
"\u65e5\u8bed\u963f\u8d1d\u591a\uff08\u91ce\u5c9b\u5065\u513f\uff09",
|
390 |
+
"\u65e5\u8bed\u57c3\u6d1b\u4f0a\uff08\u9ad8\u57a3\u5f69\u9633\uff09",
|
391 |
+
"\u65e5\u8bed\u5b89\u67cf\uff08\u77f3\u89c1\u821e\u83dc\u9999\uff09",
|
392 |
+
"\u65e5\u8bed\u795e\u91cc\u7eeb\u534e\uff08\u65e9\u89c1\u6c99\u7ec7\uff09",
|
393 |
+
"\u65e5\u8bed\u795e\u91cc\u7eeb\u4eba\uff08\u77f3\u7530\u5f70\uff09",
|
394 |
+
"\u65e5\u8bed\u767d\u672f\uff08\u6e38\u4f50\u6d69\u4e8c\uff09",
|
395 |
+
"\u65e5\u8bed\u82ad\u82ad\u62c9\uff08\u9b3c\u5934\u660e\u91cc\uff09",
|
396 |
+
"\u65e5\u8bed\u5317\u6597\uff08\u5c0f\u6e05\u6c34\u4e9a\u7f8e\uff09",
|
397 |
+
"\u65e5\u8bed\u73ed\u5c3c\u7279\uff08\u9022\u5742\u826f\u592a\uff09",
|
398 |
+
"\u65e5\u8bed\u574e\u8482\u4e1d\uff08\u67da\u6728\u51c9\u9999\uff09",
|
399 |
+
"\u65e5\u8bed\u91cd\u4e91\uff08\u9f50\u85e4\u58ee\u9a6c\uff09",
|
400 |
+
"\u65e5\u8bed\u67ef\u83b1\uff08\u524d\u5ddd\u51c9\u5b50\uff09",
|
401 |
+
"\u65e5\u8bed\u8d5b\u8bfa\uff08\u5165\u91ce\u81ea\u7531\uff09",
|
402 |
+
"\u65e5\u8bed\u6234\u56e0\u65af\u96f7\u5e03\uff08\u6d25\u7530\u5065\u6b21\u90ce\uff09",
|
403 |
+
"\u65e5\u8bed\u8fea\u5362\u514b\uff08\u5c0f\u91ce\u8d24\u7ae0\uff09",
|
404 |
+
"\u65e5\u8bed\u8fea\u5965\u5a1c\uff08\u4e95\u6cfd\u8bd7\u7ec7\uff09",
|
405 |
+
"\u65e5\u8bed\u591a\u8389\uff08\u91d1\u7530\u670b\u5b50\uff09",
|
406 |
+
"\u65e5\u8bed\u4f18\u83c8\uff08\u4f50\u85e4\u5229\u5948\uff09",
|
407 |
+
"\u65e5\u8bed\u83f2\u8c22\u5c14\uff08\u5185\u7530\u771f\u793c\uff09",
|
408 |
+
"\u65e5\u8bed\u7518\u96e8\uff08\u4e0a\u7530\u4e3d\u5948\uff09",
|
409 |
+
"\u65e5\u8bed\uff08\u7560\u4e2d\u7950\uff09",
|
410 |
+
"\u65e5\u8bed\u9e7f\u91ce\u9662\u5e73\u85cf\uff08\u4e95\u53e3\u7950\u4e00\uff09",
|
411 |
+
"\u65e5\u8bed\u7a7a\uff08\u5800\u6c5f\u77ac\uff09",
|
412 |
+
"\u65e5\u8bed\u8367\uff08\u60a0\u6728\u78a7\uff09",
|
413 |
+
"\u65e5\u8bed\u80e1\u6843\uff08\u9ad8\u6865\u674e\u4f9d\uff09",
|
414 |
+
"\u65e5\u8bed\u4e00\u6597\uff08\u897f\u5ddd\u8d35\u6559\uff09",
|
415 |
+
"\u65e5\u8bed\u51ef\u4e9a\uff08\u9e1f\u6d77\u6d69\u8f85\uff09",
|
416 |
+
"\u65e5\u8bed\u4e07\u53f6\uff08\u5c9b\u5d0e\u4fe1\u957f\uff09",
|
417 |
+
"\u65e5\u8bed\u523b\u6674\uff08\u559c\u591a\u6751\u82f1\u68a8\uff09",
|
418 |
+
"\u65e5\u8bed\u53ef\u8389\uff08\u4e45\u91ce\u7f8e\u54b2\uff09",
|
419 |
+
"\u65e5\u8bed\u5fc3\u6d77\uff08\u4e09\u68ee\u94c3\u5b50\uff09",
|
420 |
+
"\u65e5\u8bed\u4e5d\u6761\u88df\u7f57\uff08\u6fd1\u6237\u9ebb\u6c99\u7f8e\uff09",
|
421 |
+
"\u65e5\u8bed\u4e3d\u838e\uff08\u7530\u4e2d\u7406\u60e0\uff09",
|
422 |
+
"\u65e5\u8bed\u83ab\u5a1c\uff08\u5c0f\u539f\u597d\u7f8e\uff09",
|
423 |
+
"\u65e5\u8bed\u7eb3\u897f\u59b2\uff08\u7530\u6751\u7531\u52a0\u8389\uff09",
|
424 |
+
"\u65e5\u8bed\u59ae\u9732\uff08\u91d1\u5143\u5bff\u5b50\uff09",
|
425 |
+
"\u65e5\u8bed\u51dd\u5149\uff08\u5927\u539f\u6c99\u8036\u9999\uff09",
|
426 |
+
"\u65e5\u8bed\u8bfa\u827e\u5c14\uff08\u9ad8\u5c3e\u594f\u97f3\uff09",
|
427 |
+
"\u65e5\u8bed\u5965\u5179\uff08\u589e\u8c37\u5eb7\u7eaa\uff09",
|
428 |
+
"\u65e5\u8bed\u6d3e\u8499\uff08\u53e4\u8d3a\u8475\uff09",
|
429 |
+
"\u65e5\u8bed\u7434\uff08\u658b\u85e4\u5343\u548c\uff09",
|
430 |
+
"\u65e5\u8bed\u4e03\u4e03\uff08\u7530\u6751\u7531\u52a0\u8389\uff09",
|
431 |
+
"\u65e5\u8bed\u96f7\u7535\u5c06\u519b\uff08\u6cfd\u57ce\u7f8e\u96ea\uff09",
|
432 |
+
"\u65e5\u8bed\u96f7\u6cfd\uff08\u5185\u5c71\u6602\u8f89\uff09",
|
433 |
+
"\u65e5\u8bed\u7f57\u838e\u8389\u4e9a\uff08\u52a0\u9688\u4e9a\u8863\uff09",
|
434 |
+
"\u65e5\u8bed\u65e9\u67da\uff08\u6d32\u5d0e\u7eeb\uff09",
|
435 |
+
"\u65e5\u8bed\u6563\u5175\uff08\u67ff\u539f\u5f7b\u4e5f\uff09",
|
436 |
+
"\u65e5\u8bed\u7533\u9e64\uff08\u5ddd\u6f84\u7eeb\u5b50\uff09",
|
437 |
+
"\u65e5\u8bed\u4e45\u5c90\u5fcd\uff08\u6c34\u6865\u9999\u7ec7\uff09",
|
438 |
+
"\u65e5\u8bed\u5973\u58eb\uff08\u5e84\u5b50\u88d5\u8863\uff09",
|
439 |
+
"\u65e5\u8bed\u7802\u7cd6\uff08\u85e4\u7530\u831c\uff09",
|
440 |
+
"\u65e5\u8bed\u8fbe\u8fbe\u5229\u4e9a\uff08\u6728\u6751\u826f\u5e73\uff09",
|
441 |
+
"\u65e5\u8bed\u6258\u9a6c\uff08\u68ee\u7530\u6210\u4e00\uff09",
|
442 |
+
"\u65e5\u8bed\u63d0\u7eb3\u91cc\uff08\u5c0f\u6797\u6c99\u82d7\uff09",
|
443 |
+
"\u65e5\u8bed\u6e29\u8fea\uff08\u6751\u6fd1\u6b65\uff09",
|
444 |
+
"\u65e5\u8bed\u9999\u83f1\uff08\u5c0f\u6cfd\u4e9a\u674e\uff09",
|
445 |
+
"\u65e5\u8bed\u9b48\uff08\u677e\u5188\u796f\u4e1e\uff09",
|
446 |
+
"\u65e5\u8bed\u884c\u79cb\uff08\u7686\u5ddd\u7eaf\u5b50\uff09",
|
447 |
+
"\u65e5\u8bed\u8f9b\u7131\uff08\u9ad8\u6865\u667a\u79cb\uff09",
|
448 |
+
"\u65e5\u8bed\u516b\u91cd\u795e\u5b50\uff08\u4f50\u4ed3\u7eeb\u97f3\uff09",
|
449 |
+
"\u65e5\u8bed\u70df\u7eef\uff08\u82b1\u5b88\u7531\u7f8e\u91cc\uff09",
|
450 |
+
"\u65e5\u8bed\u591c\u5170\uff08\u8fdc\u85e4\u7eeb\uff09",
|
451 |
+
"\u65e5\u8bed\u5bb5\u5bab\uff08\u690d\u7530\u4f73\u5948\uff09",
|
452 |
+
"\u65e5\u8bed\u4e91\u5807\uff08\u5c0f\u5ca9\u4e95\u5c0f\u9e1f\uff09",
|
453 |
+
"\u65e5\u8bed\u949f\u79bb\uff08\u524d\u91ce\u667a\u662d\uff09",
|
454 |
+
"\u6770\u514b",
|
455 |
+
"\u963f\u5409",
|
456 |
+
"\u6c5f\u821f",
|
457 |
+
"\u9274\u79cb",
|
458 |
+
"\u5609\u4e49",
|
459 |
+
"\u7eaa\u82b3",
|
460 |
+
"\u666f\u6f84",
|
461 |
+
"\u7ecf\u7eb6",
|
462 |
+
"\u666f\u660e",
|
463 |
+
"\u664b\u4f18",
|
464 |
+
"\u963f\u9e20",
|
465 |
+
"\u9152\u5ba2",
|
466 |
+
"\u4e54\u5c14",
|
467 |
+
"\u4e54\u745f\u592b",
|
468 |
+
"\u7ea6\u987f",
|
469 |
+
"\u4e54\u4f0a\u65af",
|
470 |
+
"\u5c45\u5b89",
|
471 |
+
"\u541b\u541b",
|
472 |
+
"\u987a\u5409",
|
473 |
+
"\u7eaf\u4e5f",
|
474 |
+
"\u91cd\u4f50",
|
475 |
+
"\u5927\u5c9b\u7eaf\u5e73",
|
476 |
+
"\u84b2\u6cfd",
|
477 |
+
"\u52d8\u89e3\u7531\u5c0f\u8def\u5065\u4e09\u90ce",
|
478 |
+
"\u67ab",
|
479 |
+
"\u67ab\u539f\u4e49\u5e86",
|
480 |
+
"\u836b\u5c71",
|
481 |
+
"\u7532\u6590\u7530\u9f8d\u99ac",
|
482 |
+
"\u6d77\u6597",
|
483 |
+
"\u60df\u795e\u6674\u4e4b\u4ecb",
|
484 |
+
"\u9e7f\u91ce\u5948\u5948",
|
485 |
+
"\u5361\u7435\u8389\u4e9a",
|
486 |
+
"\u51ef\u745f\u7433",
|
487 |
+
"\u52a0\u85e4\u4fe1\u609f",
|
488 |
+
"\u52a0\u85e4\u6d0b\u5e73",
|
489 |
+
"\u80dc\u5bb6",
|
490 |
+
"\u8305\u847a\u4e00\u5e86",
|
491 |
+
"\u548c\u662d",
|
492 |
+
"\u4e00\u6b63",
|
493 |
+
"\u4e00\u9053",
|
494 |
+
"\u6842\u4e00",
|
495 |
+
"\u5e86\u6b21\u90ce",
|
496 |
+
"\u963f\u8d24",
|
497 |
+
"\u5065\u53f8",
|
498 |
+
"\u5065\u6b21\u90ce",
|
499 |
+
"\u5065\u4e09\u90ce",
|
500 |
+
"\u5929\u7406",
|
501 |
+
"\u6740\u624ba",
|
502 |
+
"\u6740\u624bb",
|
503 |
+
"\u6728\u5357\u674f\u5948",
|
504 |
+
"\u6728\u6751",
|
505 |
+
"\u56fd\u738b",
|
506 |
+
"\u6728\u4e0b",
|
507 |
+
"\u5317\u6751",
|
508 |
+
"\u6e05\u60e0",
|
509 |
+
"\u6e05\u4eba",
|
510 |
+
"\u514b\u5217\u95e8\u7279",
|
511 |
+
"\u9a91\u58eb",
|
512 |
+
"\u5c0f\u6797",
|
513 |
+
"\u5c0f\u6625",
|
514 |
+
"\u5eb7\u62c9\u5fb7",
|
515 |
+
"\u5927\u8089\u4e38",
|
516 |
+
"\u7434\u7f8e",
|
517 |
+
"\u5b8f\u4e00",
|
518 |
+
"\u5eb7\u4ecb",
|
519 |
+
"\u5e78\u5fb7",
|
520 |
+
"\u9ad8\u5584",
|
521 |
+
"\u68a2",
|
522 |
+
"\u514b\u7f57\u7d22",
|
523 |
+
"\u4e45\u4fdd",
|
524 |
+
"\u4e5d\u6761\u9570\u6cbb",
|
525 |
+
"\u4e45\u6728\u7530",
|
526 |
+
"\u6606\u94a7",
|
527 |
+
"\u83ca\u5730\u541b",
|
528 |
+
"\u4e45\u5229\u987b",
|
529 |
+
"\u9ed1\u7530",
|
530 |
+
"\u9ed1\u6cfd\u4eac\u4e4b\u4ecb",
|
531 |
+
"\u54cd\u592a",
|
532 |
+
"\u5c9a\u59d0",
|
533 |
+
"\u5170\u6eaa",
|
534 |
+
"\u6f9c\u9633",
|
535 |
+
"\u52b3\u4f26\u65af",
|
536 |
+
"\u4e50\u660e",
|
537 |
+
"\u83b1\u8bfa",
|
538 |
+
"\u83b2",
|
539 |
+
"\u826f\u5b50",
|
540 |
+
"\u674e\u5f53",
|
541 |
+
"\u674e\u4e01",
|
542 |
+
"\u5c0f\u4e50",
|
543 |
+
"\u7075",
|
544 |
+
"\u5c0f\u73b2",
|
545 |
+
"\u7433\u7405a",
|
546 |
+
"\u7433\u7405b",
|
547 |
+
"\u5c0f\u5f6c",
|
548 |
+
"\u5c0f\u5fb7",
|
549 |
+
"\u5c0f\u697d",
|
550 |
+
"\u5c0f\u9f99",
|
551 |
+
"\u5c0f\u5434",
|
552 |
+
"\u5c0f\u5434\u7684\u8bb0\u5fc6",
|
553 |
+
"\u7406\u6b63",
|
554 |
+
"\u963f\u9f99",
|
555 |
+
"\u5362\u5361",
|
556 |
+
"\u6d1b\u6210",
|
557 |
+
"\u7f57\u5de7",
|
558 |
+
"\u5317\u98ce\u72fc",
|
559 |
+
"\u5362\u6b63",
|
560 |
+
"\u840d\u59e5\u59e5",
|
561 |
+
"\u524d\u7530",
|
562 |
+
"\u771f\u663c",
|
563 |
+
"\u9ebb\u7eaa",
|
564 |
+
"\u771f",
|
565 |
+
"\u611a\u4eba\u4f17-\u9a6c\u514b\u897f\u59c6",
|
566 |
+
"\u5973\u6027a",
|
567 |
+
"\u5973\u6027b",
|
568 |
+
"\u5973\u6027a\u7684\u8ddf\u968f\u8005",
|
569 |
+
"\u963f\u5b88",
|
570 |
+
"\u739b\u683c\u4e3d\u7279",
|
571 |
+
"\u771f\u7406",
|
572 |
+
"\u739b\u4e54\u4e3d",
|
573 |
+
"\u739b\u6587",
|
574 |
+
"\u6b63\u80dc",
|
575 |
+
"\u660c\u4fe1",
|
576 |
+
"\u5c06\u53f8",
|
577 |
+
"\u6b63\u4eba",
|
578 |
+
"\u8def\u7237",
|
579 |
+
"\u8001\u7ae0",
|
580 |
+
"\u677e\u7530",
|
581 |
+
"\u677e\u672c",
|
582 |
+
"\u677e\u6d66",
|
583 |
+
"\u677e\u5742",
|
584 |
+
"\u8001\u5b5f",
|
585 |
+
"\u5b5f\u4e39",
|
586 |
+
"\u5546\u4eba\u968f\u4ece",
|
587 |
+
"\u4f20\u4ee4\u5175",
|
588 |
+
"\u7c73\u6b47\u5c14",
|
589 |
+
"\u5fa1\u8206\u6e90\u4e00\u90ce",
|
590 |
+
"\u5fa1\u8206\u6e90\u6b21\u90ce",
|
591 |
+
"\u5343\u5ca9\u519b\u6559\u5934",
|
592 |
+
"\u5343\u5ca9\u519b\u58eb\u5175",
|
593 |
+
"\u660e\u535a",
|
594 |
+
"\u660e\u4fca",
|
595 |
+
"\u7f8e\u94c3",
|
596 |
+
"\u7f8e\u548c",
|
597 |
+
"\u963f\u5e78",
|
598 |
+
"\u524a\u6708\u7b51\u9633\u771f\u541b",
|
599 |
+
"\u94b1\u773c\u513f",
|
600 |
+
"\u68ee\u5f66",
|
601 |
+
"\u5143\u52a9",
|
602 |
+
"\u7406\u6c34\u53e0\u5c71\u771f\u541b",
|
603 |
+
"\u7406\u6c34\u758a\u5c71\u771f\u541b",
|
604 |
+
"\u6731\u8001\u677f",
|
605 |
+
"\u6728\u6728",
|
606 |
+
"\u6751\u4e0a",
|
607 |
+
"\u6751\u7530",
|
608 |
+
"\u6c38\u91ce",
|
609 |
+
"\u957f\u91ce\u539f\u9f99\u4e4b\u4ecb",
|
610 |
+
"\u957f\u6fd1",
|
611 |
+
"\u4e2d\u91ce\u5fd7\u4e43",
|
612 |
+
"\u83dc\u83dc\u5b50",
|
613 |
+
"\u6960\u6960",
|
614 |
+
"\u6210\u6fd1",
|
615 |
+
"\u963f\u5185",
|
616 |
+
"\u5b81\u7984",
|
617 |
+
"\u725b\u5fd7",
|
618 |
+
"\u4fe1\u535a",
|
619 |
+
"\u4f38\u592b",
|
620 |
+
"\u91ce\u65b9",
|
621 |
+
"\u8bfa\u62c9",
|
622 |
+
"\u7eaa\u9999",
|
623 |
+
"\u8bfa\u66fc",
|
624 |
+
"\u4fee\u5973",
|
625 |
+
"\u7eaf\u6c34\u7cbe\u7075",
|
626 |
+
"\u5c0f\u5ddd",
|
627 |
+
"\u5c0f\u4ed3\u6faa",
|
628 |
+
"\u5188\u6797",
|
629 |
+
"\u5188\u5d0e\u7ed8\u91cc\u9999",
|
630 |
+
"\u5188\u5d0e\u9646\u6597",
|
631 |
+
"\u5965\u62c9\u592b",
|
632 |
+
"\u8001\u79d1",
|
633 |
+
"\u9b3c\u5a46\u5a46",
|
634 |
+
"\u5c0f\u91ce\u5bfa",
|
635 |
+
"\u5927\u6cb3\u539f\u4e94\u53f3\u536b\u95e8",
|
636 |
+
"\u5927\u4e45\u4fdd\u5927\u4ecb",
|
637 |
+
"\u5927\u68ee",
|
638 |
+
"\u5927\u52a9",
|
639 |
+
"\u5965\u7279",
|
640 |
+
"\u6d3e\u8499",
|
641 |
+
"\u6d3e\u84992",
|
642 |
+
"\u75c5\u4ebaa",
|
643 |
+
"\u75c5\u4ebab",
|
644 |
+
"\u5df4\u987f",
|
645 |
+
"\u6d3e\u6069",
|
646 |
+
"\u670b\u4e49",
|
647 |
+
"\u56f4\u89c2\u7fa4\u4f17",
|
648 |
+
"\u56f4\u89c2\u7fa4\u4f17a",
|
649 |
+
"\u56f4\u89c2\u7fa4\u4f17b",
|
650 |
+
"\u56f4\u89c2\u7fa4\u4f17c",
|
651 |
+
"\u56f4\u89c2\u7fa4\u4f17d",
|
652 |
+
"\u56f4\u89c2\u7fa4\u4f17e",
|
653 |
+
"\u94dc\u96c0",
|
654 |
+
"\u963f\u80a5",
|
655 |
+
"\u5174\u53d4",
|
656 |
+
"\u8001\u5468\u53d4",
|
657 |
+
"\u516c\u4e3b",
|
658 |
+
"\u5f7c\u5f97",
|
659 |
+
"\u4e7e\u5b50",
|
660 |
+
"\u828a\u828a",
|
661 |
+
"\u4e7e\u73ae",
|
662 |
+
"\u7eee\u547d",
|
663 |
+
"\u675e\u5e73",
|
664 |
+
"\u79cb\u6708",
|
665 |
+
"\u6606\u6069",
|
666 |
+
"\u96f7\u7535\u5f71",
|
667 |
+
"\u5170\u9053\u5c14",
|
668 |
+
"\u96f7\u8499\u5fb7",
|
669 |
+
"\u5192\u5931\u7684\u5e15\u62c9\u5fb7",
|
670 |
+
"\u4f36\u4e00",
|
671 |
+
"\u73b2\u82b1",
|
672 |
+
"\u963f\u4ec1",
|
673 |
+
"\u5bb6\u81e3\u4eec",
|
674 |
+
"\u68a8\u7ed8",
|
675 |
+
"\u8363\u6c5f",
|
676 |
+
"\u620e\u4e16",
|
677 |
+
"\u6d6a\u4eba",
|
678 |
+
"\u7f57\u4f0a\u65af",
|
679 |
+
"\u5982\u610f",
|
680 |
+
"\u51c9\u5b50",
|
681 |
+
"\u5f69\u9999",
|
682 |
+
"\u9152\u4e95",
|
683 |
+
"\u5742\u672c",
|
684 |
+
"\u6714\u6b21\u90ce",
|
685 |
+
"\u6b66\u58eba",
|
686 |
+
"\u6b66\u58ebb",
|
687 |
+
"\u6b66\u58ebc",
|
688 |
+
"\u6b66\u58ebd",
|
689 |
+
"\u73ca\u745a",
|
690 |
+
"\u4e09\u7530",
|
691 |
+
"\u838e\u62c9",
|
692 |
+
"\u7b39\u91ce",
|
693 |
+
"\u806a\u7f8e",
|
694 |
+
"\u806a",
|
695 |
+
"\u5c0f\u767e\u5408",
|
696 |
+
"\u6563\u5175",
|
697 |
+
"\u5bb3\u6015\u7684\u5c0f\u5218",
|
698 |
+
"\u8212\u4f2f\u7279",
|
699 |
+
"\u8212\u8328",
|
700 |
+
"\u6d77\u9f99",
|
701 |
+
"\u4e16\u5b50",
|
702 |
+
"\u8c22\u5c14\u76d6",
|
703 |
+
"\u5bb6\u4e01",
|
704 |
+
"\u5546\u534e",
|
705 |
+
"\u6c99\u5bc5",
|
706 |
+
"\u963f\u5347",
|
707 |
+
"\u67f4\u7530",
|
708 |
+
"\u963f\u8302",
|
709 |
+
"\u5f0f\u5927\u5c06",
|
710 |
+
"\u6e05\u6c34",
|
711 |
+
"\u5fd7\u6751\u52d8\u5175\u536b",
|
712 |
+
"\u65b0\u4e4b\u4e1e",
|
713 |
+
"\u5fd7\u7ec7",
|
714 |
+
"\u77f3\u5934",
|
715 |
+
"\u8bd7\u7fbd",
|
716 |
+
"\u8bd7\u7b60",
|
717 |
+
"\u77f3\u58ee",
|
718 |
+
"\u7fd4\u592a",
|
719 |
+
"\u6b63\u4e8c",
|
720 |
+
"\u5468\u5e73",
|
721 |
+
"\u8212\u6768",
|
722 |
+
"\u9f50\u683c\u8299\u4e3d\u96c5",
|
723 |
+
"\u5973\u58eb",
|
724 |
+
"\u601d\u52e4",
|
725 |
+
"\u516d\u6307\u4e54\u745f",
|
726 |
+
"\u611a\u4eba\u4f17\u5c0f\u5175d",
|
727 |
+
"\u611a\u4eba\u4f17\u5c0f\u5175a",
|
728 |
+
"\u611a\u4eba\u4f17\u5c0f\u5175b",
|
729 |
+
"\u611a\u4eba\u4f17\u5c0f\u5175c",
|
730 |
+
"\u5434\u8001\u4e94",
|
731 |
+
"\u5434\u8001\u4e8c",
|
732 |
+
"\u6ed1\u5934\u9b3c",
|
733 |
+
"\u8a00\u7b11",
|
734 |
+
"\u5434\u8001\u4e03",
|
735 |
+
"\u58eb\u5175h",
|
736 |
+
"\u58eb\u5175i",
|
737 |
+
"\u58eb\u5175a",
|
738 |
+
"\u58eb\u5175b",
|
739 |
+
"\u58eb\u5175c",
|
740 |
+
"\u58eb\u5175d",
|
741 |
+
"\u58eb\u5175e",
|
742 |
+
"\u58eb\u5175f",
|
743 |
+
"\u58eb\u5175g",
|
744 |
+
"\u594f\u592a",
|
745 |
+
"\u65af\u5766\u5229",
|
746 |
+
"\u6387\u661f\u652b\u8fb0\u5929\u541b",
|
747 |
+
"\u5c0f\u5934",
|
748 |
+
"\u5927\u6b66",
|
749 |
+
"\u9676\u4e49\u9686",
|
750 |
+
"\u6749\u672c",
|
751 |
+
"\u82cf\u897f",
|
752 |
+
"\u5acc\u7591\u4ebaa",
|
753 |
+
"\u5acc\u7591\u4ebab",
|
754 |
+
"\u5acc\u7591\u4ebac",
|
755 |
+
"\u5acc\u7591\u4ebad",
|
756 |
+
"\u65af\u4e07",
|
757 |
+
"\u5251\u5ba2a",
|
758 |
+
"\u5251\u5ba2b",
|
759 |
+
"\u963f\u4e8c",
|
760 |
+
"\u5fe0\u80dc",
|
761 |
+
"\u5fe0\u592b",
|
762 |
+
"\u963f\u656c",
|
763 |
+
"\u5b5d\u5229",
|
764 |
+
"\u9e70\u53f8\u8fdb",
|
765 |
+
"\u9ad8\u5c71",
|
766 |
+
"\u4e5d\u6761\u5b5d\u884c",
|
767 |
+
"\u6bc5",
|
768 |
+
"\u7af9\u5185",
|
769 |
+
"\u62d3\u771f",
|
770 |
+
"\u5353\u4e5f",
|
771 |
+
"\u592a\u90ce\u4e38",
|
772 |
+
"\u6cf0\u52d2",
|
773 |
+
"\u624b\u5c9b",
|
774 |
+
"\u54f2\u5e73",
|
775 |
+
"\u54f2\u592b",
|
776 |
+
"\u6258\u514b",
|
777 |
+
"\u5927boss",
|
778 |
+
"\u963f\u5f3a",
|
779 |
+
"\u6258\u5c14\u5fb7\u62c9",
|
780 |
+
"\u65c1\u89c2\u8005",
|
781 |
+
"\u5929\u6210",
|
782 |
+
"\u963f\u5927",
|
783 |
+
"\u8482\u739b\u4e4c\u65af",
|
784 |
+
"\u63d0\u7c73",
|
785 |
+
"\u6237\u7530",
|
786 |
+
"\u963f\u4e09",
|
787 |
+
"\u4e00\u8d77\u7684\u4eba",
|
788 |
+
"\u5fb7\u7530",
|
789 |
+
"\u5fb7\u957f",
|
790 |
+
"\u667a\u6811",
|
791 |
+
"\u5229\u5f66",
|
792 |
+
"\u80d6\u4e4e\u4e4e\u7684\u65c5\u884c\u8005",
|
793 |
+
"\u85cf\u5b9d\u4ebaa",
|
794 |
+
"\u85cf\u5b9d\u4ebab",
|
795 |
+
"\u85cf\u5b9d\u4ebac",
|
796 |
+
"\u85cf\u5b9d\u4ebad",
|
797 |
+
"\u963f\u7947",
|
798 |
+
"\u6052\u96c4",
|
799 |
+
"\u9732\u5b50",
|
800 |
+
"\u8bdd\u5267\u56e2\u56e2\u957f",
|
801 |
+
"\u5185\u6751",
|
802 |
+
"\u4e0a\u91ce",
|
803 |
+
"\u4e0a\u6749",
|
804 |
+
"\u8001\u6234",
|
805 |
+
"\u8001\u9ad8",
|
806 |
+
"\u8001\u8d3e",
|
807 |
+
"\u8001\u58a8",
|
808 |
+
"\u8001\u5b59",
|
809 |
+
"\u5929\u67a2\u661f",
|
810 |
+
"\u8001\u4e91",
|
811 |
+
"\u6709\u4e50\u658b",
|
812 |
+
"\u4e11\u96c4",
|
813 |
+
"\u4e4c\u7ef4",
|
814 |
+
"\u74e6\u4eac",
|
815 |
+
"\u83f2\u5c14\u6208\u9edb\u7279",
|
816 |
+
"\u7ef4\u591a\u5229\u4e9a",
|
817 |
+
"\u8587\u5c14",
|
818 |
+
"\u74e6\u683c\u7eb3",
|
819 |
+
"\u963f\u5916",
|
820 |
+
"\u4f8d\u5973",
|
821 |
+
"\u74e6\u62c9",
|
822 |
+
"\u671b\u96c5",
|
823 |
+
"\u5b9b\u70df",
|
824 |
+
"\u742c\u7389",
|
825 |
+
"\u6218\u58eba",
|
826 |
+
"\u6218\u58ebb",
|
827 |
+
"\u6e21\u8fba",
|
828 |
+
"\u6e21\u90e8",
|
829 |
+
"\u963f\u4f1f",
|
830 |
+
"\u6587\u749f",
|
831 |
+
"\u6587\u6e0a",
|
832 |
+
"\u97e6\u5c14\u7eb3",
|
833 |
+
"\u738b\u6273\u624b",
|
834 |
+
"\u6b66\u6c9b",
|
835 |
+
"\u6653\u98de",
|
836 |
+
"\u8f9b\u7a0b",
|
837 |
+
"\u661f\u706b",
|
838 |
+
"\u661f\u7a00",
|
839 |
+
"\u8f9b\u79c0",
|
840 |
+
"\u79c0\u534e",
|
841 |
+
"\u963f\u65ed",
|
842 |
+
"\u5f90\u5218\u5e08",
|
843 |
+
"\u77e2\u90e8",
|
844 |
+
"\u516b\u6728",
|
845 |
+
"\u5c71\u4e0a",
|
846 |
+
"\u963f\u9633",
|
847 |
+
"\u989c\u7b11",
|
848 |
+
"\u5eb7\u660e",
|
849 |
+
"\u6cf0\u4e45",
|
850 |
+
"\u5b89\u6b66",
|
851 |
+
"\u77e2\u7530\u5e78\u559c",
|
852 |
+
"\u77e2\u7530\u8f9b\u559c",
|
853 |
+
"\u4e49\u575a",
|
854 |
+
"\u83ba\u513f",
|
855 |
+
"\u76c8\u4e30",
|
856 |
+
"\u5b9c\u5e74",
|
857 |
+
"\u94f6\u674f",
|
858 |
+
"\u9038\u8f69",
|
859 |
+
"\u6a2a\u5c71",
|
860 |
+
"\u6c38\u8d35",
|
861 |
+
"\u6c38\u4e1a",
|
862 |
+
"\u5609\u4e45",
|
863 |
+
"\u5409\u5ddd",
|
864 |
+
"\u4e49\u9ad8",
|
865 |
+
"\u7528\u9ad8",
|
866 |
+
"\u9633\u592a",
|
867 |
+
"\u5143\u84c9",
|
868 |
+
"\u73a5\u8f89",
|
869 |
+
"\u6bd3\u534e",
|
870 |
+
"\u6709\u9999",
|
871 |
+
"\u5e78\u4e5f",
|
872 |
+
"\u7531\u771f",
|
873 |
+
"\u7ed3\u83dc",
|
874 |
+
"\u97f5\u5b81",
|
875 |
+
"\u767e\u5408",
|
876 |
+
"\u767e\u5408\u534e",
|
877 |
+
"\u5c24\u82cf\u6ce2\u592b",
|
878 |
+
"\u88d5\u5b50",
|
879 |
+
"\u60a0\u7b56",
|
880 |
+
"\u60a0\u4e5f",
|
881 |
+
"\u4e8e\u5ae3",
|
882 |
+
"\u67da\u5b50",
|
883 |
+
"\u8001\u90d1",
|
884 |
+
"\u6b63\u8302",
|
885 |
+
"\u5fd7\u6210",
|
886 |
+
"\u82b7\u5de7",
|
887 |
+
"\u77e5\u6613",
|
888 |
+
"\u652f\u652f",
|
889 |
+
"\u5468\u826f",
|
890 |
+
"\u73e0\u51fd",
|
891 |
+
"\u795d\u660e",
|
892 |
+
"\u795d\u6d9b"
|
893 |
+
],
|
894 |
+
"symbols": [
|
895 |
+
"_",
|
896 |
+
",",
|
897 |
+
".",
|
898 |
+
"!",
|
899 |
+
"?",
|
900 |
+
"-",
|
901 |
+
"~",
|
902 |
+
"\u2026",
|
903 |
+
"A",
|
904 |
+
"E",
|
905 |
+
"I",
|
906 |
+
"N",
|
907 |
+
"O",
|
908 |
+
"Q",
|
909 |
+
"U",
|
910 |
+
"a",
|
911 |
+
"b",
|
912 |
+
"d",
|
913 |
+
"e",
|
914 |
+
"f",
|
915 |
+
"g",
|
916 |
+
"h",
|
917 |
+
"i",
|
918 |
+
"j",
|
919 |
+
"k",
|
920 |
+
"l",
|
921 |
+
"m",
|
922 |
+
"n",
|
923 |
+
"o",
|
924 |
+
"p",
|
925 |
+
"r",
|
926 |
+
"s",
|
927 |
+
"t",
|
928 |
+
"u",
|
929 |
+
"v",
|
930 |
+
"w",
|
931 |
+
"y",
|
932 |
+
"z",
|
933 |
+
"\u0283",
|
934 |
+
"\u02a7",
|
935 |
+
"\u02a6",
|
936 |
+
"\u026f",
|
937 |
+
"\u0279",
|
938 |
+
"\u0259",
|
939 |
+
"\u0265",
|
940 |
+
"\u207c",
|
941 |
+
"\u02b0",
|
942 |
+
"`",
|
943 |
+
"\u2192",
|
944 |
+
"\u2193",
|
945 |
+
"\u2191",
|
946 |
+
" "
|
947 |
+
]
|
948 |
+
}
|
models/haruka/haruka.png
ADDED
models/haruka/haruka.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a64ffc3a76e36d5db6292edf978639c469b09d9cde6fcff96795ae49f0ca029b
|
3 |
+
size 479268167
|
models/hifumi/hifumi.png
ADDED
models/hifumi/hifumi.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb8f86ef857682b17d770423ed62dc89506aa263fe972ad91ce1fd1546af438f
|
3 |
+
size 479328189
|
models/kayoko/kayoko.png
ADDED
models/kayoko/kayoko.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc30f8f85adb304dc4be88c6acb0369dca652c10341de4155dbe147aec218936
|
3 |
+
size 479268167
|
models/koharu/koharu.png
ADDED
models/koharu/koharu.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e49edbb3b3cb692abbb6ffd44bf2102f90d5e5d759a5445d4f22a64d939d78d1
|
3 |
+
size 479328190
|
models/metadata.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"aru": {
|
3 |
+
"enable": true,
|
4 |
+
"name_en": "Aru",
|
5 |
+
"name_jp": "アル",
|
6 |
+
"model": "./models/aru/aru.pth",
|
7 |
+
"avatar": "./models/aru/aru.png",
|
8 |
+
"example_text": "はい、便利屋68の陸八魔です。"
|
9 |
+
},
|
10 |
+
"haruka": {
|
11 |
+
"enable": true,
|
12 |
+
"name_en": "Haruka",
|
13 |
+
"name_jp": "ハルカ",
|
14 |
+
"model": "./models/haruka/haruka.pth",
|
15 |
+
"avatar": "./models/haruka/haruka.png",
|
16 |
+
"example_text": "はい?私が必要ですか?え、うう、そ、そんな…。"
|
17 |
+
},
|
18 |
+
"hifumi": {
|
19 |
+
"enable": true,
|
20 |
+
"name_en": "Hifumi",
|
21 |
+
"name_jp": "ヒフミ",
|
22 |
+
"model": "./models/hifumi/hifumi.pth",
|
23 |
+
"avatar": "./models/hifumi/hifumi.png",
|
24 |
+
"example_text": "これですか…?これはペロロ様です!可愛いでしょ!"
|
25 |
+
},
|
26 |
+
"kayoko": {
|
27 |
+
"enable": true,
|
28 |
+
"name_en": "Kayoko",
|
29 |
+
"name_jp": "カヨコ",
|
30 |
+
"model": "./models/kayoko/kayoko.pth",
|
31 |
+
"avatar": "./models/kayoko/kayoko.png",
|
32 |
+
"example_text": "なんか用?まぁ、問題があったら解決してあげるけど。"
|
33 |
+
},
|
34 |
+
"koharu": {
|
35 |
+
"enable": true,
|
36 |
+
"name_en": "Koharu",
|
37 |
+
"name_jp": "コハル",
|
38 |
+
"model": "./models/koharu/koharu.pth",
|
39 |
+
"avatar": "./models/koharu/koharu.png",
|
40 |
+
"example_text": "わ、私の前で、そこをフリをとか許さないから!"
|
41 |
+
},
|
42 |
+
"mutsuki": {
|
43 |
+
"enable": true,
|
44 |
+
"name_en": "Mutsuki",
|
45 |
+
"name_jp": "ムツキ",
|
46 |
+
"model": "./models/mutsuki/mutsuki.pth",
|
47 |
+
"avatar": "./models/mutsuki/mutsuki.png",
|
48 |
+
"example_text": "くふふ~。照れる表情、面白~い"
|
49 |
+
}
|
50 |
+
}
|
models/mutsuki/mutsuki.png
ADDED
models/mutsuki/mutsuki.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f80f5ac225922d2e8b7cc71f2c8e21c99d01407160cd18ea42e071de1a6ab3aa
|
3 |
+
size 479268167
|
modules.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import commons
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
from transforms import piecewise_rational_quadratic_transform
|
15 |
+
|
16 |
+
|
17 |
+
LRELU_SLOPE = 0.1
|
18 |
+
|
19 |
+
|
20 |
+
class LayerNorm(nn.Module):
|
21 |
+
def __init__(self, channels, eps=1e-5):
|
22 |
+
super().__init__()
|
23 |
+
self.channels = channels
|
24 |
+
self.eps = eps
|
25 |
+
|
26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = x.transpose(1, -1)
|
31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
+
return x.transpose(1, -1)
|
33 |
+
|
34 |
+
|
35 |
+
class ConvReluNorm(nn.Module):
|
36 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
37 |
+
super().__init__()
|
38 |
+
self.in_channels = in_channels
|
39 |
+
self.hidden_channels = hidden_channels
|
40 |
+
self.out_channels = out_channels
|
41 |
+
self.kernel_size = kernel_size
|
42 |
+
self.n_layers = n_layers
|
43 |
+
self.p_dropout = p_dropout
|
44 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
45 |
+
|
46 |
+
self.conv_layers = nn.ModuleList()
|
47 |
+
self.norm_layers = nn.ModuleList()
|
48 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
49 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
50 |
+
self.relu_drop = nn.Sequential(
|
51 |
+
nn.ReLU(),
|
52 |
+
nn.Dropout(p_dropout))
|
53 |
+
for _ in range(n_layers-1):
|
54 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
55 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
56 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
57 |
+
self.proj.weight.data.zero_()
|
58 |
+
self.proj.bias.data.zero_()
|
59 |
+
|
60 |
+
def forward(self, x, x_mask):
|
61 |
+
x_org = x
|
62 |
+
for i in range(self.n_layers):
|
63 |
+
x = self.conv_layers[i](x * x_mask)
|
64 |
+
x = self.norm_layers[i](x)
|
65 |
+
x = self.relu_drop(x)
|
66 |
+
x = x_org + self.proj(x)
|
67 |
+
return x * x_mask
|
68 |
+
|
69 |
+
|
70 |
+
class DDSConv(nn.Module):
|
71 |
+
"""
|
72 |
+
Dialted and Depth-Separable Convolution
|
73 |
+
"""
|
74 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
75 |
+
super().__init__()
|
76 |
+
self.channels = channels
|
77 |
+
self.kernel_size = kernel_size
|
78 |
+
self.n_layers = n_layers
|
79 |
+
self.p_dropout = p_dropout
|
80 |
+
|
81 |
+
self.drop = nn.Dropout(p_dropout)
|
82 |
+
self.convs_sep = nn.ModuleList()
|
83 |
+
self.convs_1x1 = nn.ModuleList()
|
84 |
+
self.norms_1 = nn.ModuleList()
|
85 |
+
self.norms_2 = nn.ModuleList()
|
86 |
+
for i in range(n_layers):
|
87 |
+
dilation = kernel_size ** i
|
88 |
+
padding = (kernel_size * dilation - dilation) // 2
|
89 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
90 |
+
groups=channels, dilation=dilation, padding=padding
|
91 |
+
))
|
92 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
93 |
+
self.norms_1.append(LayerNorm(channels))
|
94 |
+
self.norms_2.append(LayerNorm(channels))
|
95 |
+
|
96 |
+
def forward(self, x, x_mask, g=None):
|
97 |
+
if g is not None:
|
98 |
+
x = x + g
|
99 |
+
for i in range(self.n_layers):
|
100 |
+
y = self.convs_sep[i](x * x_mask)
|
101 |
+
y = self.norms_1[i](y)
|
102 |
+
y = F.gelu(y)
|
103 |
+
y = self.convs_1x1[i](y)
|
104 |
+
y = self.norms_2[i](y)
|
105 |
+
y = F.gelu(y)
|
106 |
+
y = self.drop(y)
|
107 |
+
x = x + y
|
108 |
+
return x * x_mask
|
109 |
+
|
110 |
+
|
111 |
+
class WN(torch.nn.Module):
|
112 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
113 |
+
super(WN, self).__init__()
|
114 |
+
assert(kernel_size % 2 == 1)
|
115 |
+
self.hidden_channels =hidden_channels
|
116 |
+
self.kernel_size = kernel_size,
|
117 |
+
self.dilation_rate = dilation_rate
|
118 |
+
self.n_layers = n_layers
|
119 |
+
self.gin_channels = gin_channels
|
120 |
+
self.p_dropout = p_dropout
|
121 |
+
|
122 |
+
self.in_layers = torch.nn.ModuleList()
|
123 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
124 |
+
self.drop = nn.Dropout(p_dropout)
|
125 |
+
|
126 |
+
if gin_channels != 0:
|
127 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
128 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
129 |
+
|
130 |
+
for i in range(n_layers):
|
131 |
+
dilation = dilation_rate ** i
|
132 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
133 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
134 |
+
dilation=dilation, padding=padding)
|
135 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
136 |
+
self.in_layers.append(in_layer)
|
137 |
+
|
138 |
+
# last one is not necessary
|
139 |
+
if i < n_layers - 1:
|
140 |
+
res_skip_channels = 2 * hidden_channels
|
141 |
+
else:
|
142 |
+
res_skip_channels = hidden_channels
|
143 |
+
|
144 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
145 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
146 |
+
self.res_skip_layers.append(res_skip_layer)
|
147 |
+
|
148 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
149 |
+
output = torch.zeros_like(x)
|
150 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
151 |
+
|
152 |
+
if g is not None:
|
153 |
+
g = self.cond_layer(g)
|
154 |
+
|
155 |
+
for i in range(self.n_layers):
|
156 |
+
x_in = self.in_layers[i](x)
|
157 |
+
if g is not None:
|
158 |
+
cond_offset = i * 2 * self.hidden_channels
|
159 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
160 |
+
else:
|
161 |
+
g_l = torch.zeros_like(x_in)
|
162 |
+
|
163 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
164 |
+
x_in,
|
165 |
+
g_l,
|
166 |
+
n_channels_tensor)
|
167 |
+
acts = self.drop(acts)
|
168 |
+
|
169 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
170 |
+
if i < self.n_layers - 1:
|
171 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
172 |
+
x = (x + res_acts) * x_mask
|
173 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
174 |
+
else:
|
175 |
+
output = output + res_skip_acts
|
176 |
+
return output * x_mask
|
177 |
+
|
178 |
+
def remove_weight_norm(self):
|
179 |
+
if self.gin_channels != 0:
|
180 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
181 |
+
for l in self.in_layers:
|
182 |
+
torch.nn.utils.remove_weight_norm(l)
|
183 |
+
for l in self.res_skip_layers:
|
184 |
+
torch.nn.utils.remove_weight_norm(l)
|
185 |
+
|
186 |
+
|
187 |
+
class ResBlock1(torch.nn.Module):
|
188 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
189 |
+
super(ResBlock1, self).__init__()
|
190 |
+
self.convs1 = nn.ModuleList([
|
191 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
192 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
193 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
194 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
195 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
196 |
+
padding=get_padding(kernel_size, dilation[2])))
|
197 |
+
])
|
198 |
+
self.convs1.apply(init_weights)
|
199 |
+
|
200 |
+
self.convs2 = nn.ModuleList([
|
201 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
202 |
+
padding=get_padding(kernel_size, 1))),
|
203 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
204 |
+
padding=get_padding(kernel_size, 1))),
|
205 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
206 |
+
padding=get_padding(kernel_size, 1)))
|
207 |
+
])
|
208 |
+
self.convs2.apply(init_weights)
|
209 |
+
|
210 |
+
def forward(self, x, x_mask=None):
|
211 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
212 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
213 |
+
if x_mask is not None:
|
214 |
+
xt = xt * x_mask
|
215 |
+
xt = c1(xt)
|
216 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
217 |
+
if x_mask is not None:
|
218 |
+
xt = xt * x_mask
|
219 |
+
xt = c2(xt)
|
220 |
+
x = xt + x
|
221 |
+
if x_mask is not None:
|
222 |
+
x = x * x_mask
|
223 |
+
return x
|
224 |
+
|
225 |
+
def remove_weight_norm(self):
|
226 |
+
for l in self.convs1:
|
227 |
+
remove_weight_norm(l)
|
228 |
+
for l in self.convs2:
|
229 |
+
remove_weight_norm(l)
|
230 |
+
|
231 |
+
|
232 |
+
class ResBlock2(torch.nn.Module):
|
233 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
234 |
+
super(ResBlock2, self).__init__()
|
235 |
+
self.convs = nn.ModuleList([
|
236 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
237 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
238 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
239 |
+
padding=get_padding(kernel_size, dilation[1])))
|
240 |
+
])
|
241 |
+
self.convs.apply(init_weights)
|
242 |
+
|
243 |
+
def forward(self, x, x_mask=None):
|
244 |
+
for c in self.convs:
|
245 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
246 |
+
if x_mask is not None:
|
247 |
+
xt = xt * x_mask
|
248 |
+
xt = c(xt)
|
249 |
+
x = xt + x
|
250 |
+
if x_mask is not None:
|
251 |
+
x = x * x_mask
|
252 |
+
return x
|
253 |
+
|
254 |
+
def remove_weight_norm(self):
|
255 |
+
for l in self.convs:
|
256 |
+
remove_weight_norm(l)
|
257 |
+
|
258 |
+
|
259 |
+
class Log(nn.Module):
|
260 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
261 |
+
if not reverse:
|
262 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
263 |
+
logdet = torch.sum(-y, [1, 2])
|
264 |
+
return y, logdet
|
265 |
+
else:
|
266 |
+
x = torch.exp(x) * x_mask
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
class Flip(nn.Module):
|
271 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
272 |
+
x = torch.flip(x, [1])
|
273 |
+
if not reverse:
|
274 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
275 |
+
return x, logdet
|
276 |
+
else:
|
277 |
+
return x
|
278 |
+
|
279 |
+
|
280 |
+
class ElementwiseAffine(nn.Module):
|
281 |
+
def __init__(self, channels):
|
282 |
+
super().__init__()
|
283 |
+
self.channels = channels
|
284 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
286 |
+
|
287 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
288 |
+
if not reverse:
|
289 |
+
y = self.m + torch.exp(self.logs) * x
|
290 |
+
y = y * x_mask
|
291 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
292 |
+
return y, logdet
|
293 |
+
else:
|
294 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class ResidualCouplingLayer(nn.Module):
|
299 |
+
def __init__(self,
|
300 |
+
channels,
|
301 |
+
hidden_channels,
|
302 |
+
kernel_size,
|
303 |
+
dilation_rate,
|
304 |
+
n_layers,
|
305 |
+
p_dropout=0,
|
306 |
+
gin_channels=0,
|
307 |
+
mean_only=False):
|
308 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
309 |
+
super().__init__()
|
310 |
+
self.channels = channels
|
311 |
+
self.hidden_channels = hidden_channels
|
312 |
+
self.kernel_size = kernel_size
|
313 |
+
self.dilation_rate = dilation_rate
|
314 |
+
self.n_layers = n_layers
|
315 |
+
self.half_channels = channels // 2
|
316 |
+
self.mean_only = mean_only
|
317 |
+
|
318 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
319 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
320 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
321 |
+
self.post.weight.data.zero_()
|
322 |
+
self.post.bias.data.zero_()
|
323 |
+
|
324 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
325 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
326 |
+
h = self.pre(x0) * x_mask
|
327 |
+
h = self.enc(h, x_mask, g=g)
|
328 |
+
stats = self.post(h) * x_mask
|
329 |
+
if not self.mean_only:
|
330 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
331 |
+
else:
|
332 |
+
m = stats
|
333 |
+
logs = torch.zeros_like(m)
|
334 |
+
|
335 |
+
if not reverse:
|
336 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
337 |
+
x = torch.cat([x0, x1], 1)
|
338 |
+
logdet = torch.sum(logs, [1,2])
|
339 |
+
return x, logdet
|
340 |
+
else:
|
341 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
342 |
+
x = torch.cat([x0, x1], 1)
|
343 |
+
return x
|
344 |
+
|
345 |
+
|
346 |
+
class ConvFlow(nn.Module):
|
347 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
348 |
+
super().__init__()
|
349 |
+
self.in_channels = in_channels
|
350 |
+
self.filter_channels = filter_channels
|
351 |
+
self.kernel_size = kernel_size
|
352 |
+
self.n_layers = n_layers
|
353 |
+
self.num_bins = num_bins
|
354 |
+
self.tail_bound = tail_bound
|
355 |
+
self.half_channels = in_channels // 2
|
356 |
+
|
357 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
358 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
359 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
360 |
+
self.proj.weight.data.zero_()
|
361 |
+
self.proj.bias.data.zero_()
|
362 |
+
|
363 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
364 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
365 |
+
h = self.pre(x0)
|
366 |
+
h = self.convs(h, x_mask, g=g)
|
367 |
+
h = self.proj(h) * x_mask
|
368 |
+
|
369 |
+
b, c, t = x0.shape
|
370 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
371 |
+
|
372 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
373 |
+
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
374 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
375 |
+
|
376 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
377 |
+
unnormalized_widths,
|
378 |
+
unnormalized_heights,
|
379 |
+
unnormalized_derivatives,
|
380 |
+
inverse=reverse,
|
381 |
+
tails='linear',
|
382 |
+
tail_bound=self.tail_bound
|
383 |
+
)
|
384 |
+
|
385 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
386 |
+
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
387 |
+
if not reverse:
|
388 |
+
return x, logdet
|
389 |
+
else:
|
390 |
+
return x
|
monotonic_align/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from .monotonic_align.core import maximum_path_c
|
4 |
+
|
5 |
+
|
6 |
+
def maximum_path(neg_cent, mask):
|
7 |
+
""" Cython optimized version.
|
8 |
+
neg_cent: [b, t_t, t_s]
|
9 |
+
mask: [b, t_t, t_s]
|
10 |
+
"""
|
11 |
+
device = neg_cent.device
|
12 |
+
dtype = neg_cent.dtype
|
13 |
+
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
|
14 |
+
path = np.zeros(neg_cent.shape, dtype=np.int32)
|
15 |
+
|
16 |
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
|
17 |
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
|
18 |
+
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
|
19 |
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
monotonic_align/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (805 Bytes). View file
|
|
monotonic_align/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (813 Bytes). View file
|
|
monotonic_align/build/lib.win-amd64-cpython-37/monotonic_align/core.cp37-win_amd64.pyd
ADDED
Binary file (125 kB). View file
|
|
monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.exp
ADDED
Binary file (776 Bytes). View file
|
|
monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.lib
ADDED
Binary file (1.94 kB). View file
|
|
monotonic_align/build/temp.win-amd64-3.7/Release/core.obj
ADDED
Binary file (867 kB). View file
|
|
monotonic_align/build/temp.win-amd64-cpython-37/Release/core.cp37-win_amd64.exp
ADDED
Binary file (783 Bytes). View file
|
|
monotonic_align/build/temp.win-amd64-cpython-37/Release/core.cp37-win_amd64.lib
ADDED
Binary file (1.94 kB). View file
|
|
monotonic_align/build/temp.win-amd64-cpython-37/Release/core.obj
ADDED
Binary file (874 kB). View file
|
|
monotonic_align/core.c
ADDED
The diff for this file is too large to render.
See raw diff
|
|
monotonic_align/core.pyx
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cimport cython
|
2 |
+
from cython.parallel import prange
|
3 |
+
|
4 |
+
|
5 |
+
@cython.boundscheck(False)
|
6 |
+
@cython.wraparound(False)
|
7 |
+
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
|
8 |
+
cdef int x
|
9 |
+
cdef int y
|
10 |
+
cdef float v_prev
|
11 |
+
cdef float v_cur
|
12 |
+
cdef float tmp
|
13 |
+
cdef int index = t_x - 1
|
14 |
+
|
15 |
+
for y in range(t_y):
|
16 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
17 |
+
if x == y:
|
18 |
+
v_cur = max_neg_val
|
19 |
+
else:
|
20 |
+
v_cur = value[y-1, x]
|
21 |
+
if x == 0:
|
22 |
+
if y == 0:
|
23 |
+
v_prev = 0.
|
24 |
+
else:
|
25 |
+
v_prev = max_neg_val
|
26 |
+
else:
|
27 |
+
v_prev = value[y-1, x-1]
|
28 |
+
value[y, x] += max(v_prev, v_cur)
|
29 |
+
|
30 |
+
for y in range(t_y - 1, -1, -1):
|
31 |
+
path[y, index] = 1
|
32 |
+
if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
|
33 |
+
index = index - 1
|
34 |
+
|
35 |
+
|
36 |
+
@cython.boundscheck(False)
|
37 |
+
@cython.wraparound(False)
|
38 |
+
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
|
39 |
+
cdef int b = paths.shape[0]
|
40 |
+
cdef int i
|
41 |
+
for i in prange(b, nogil=True):
|
42 |
+
maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
|
monotonic_align/monotonic_align/core.cp37-win_amd64.pyd
ADDED
Binary file (125 kB). View file
|
|
monotonic_align/setup.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from distutils.core import setup
|
2 |
+
from Cython.Build import cythonize
|
3 |
+
import numpy
|
4 |
+
|
5 |
+
setup(
|
6 |
+
name = 'monotonic_align',
|
7 |
+
ext_modules = cythonize("core.pyx"),
|
8 |
+
include_dirs=[numpy.get_include()]
|
9 |
+
)
|
preprocess.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import text
|
3 |
+
from utils import load_filepaths_and_text
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
parser = argparse.ArgumentParser()
|
7 |
+
parser.add_argument("--out_extension", default="cleaned")
|
8 |
+
parser.add_argument("--text_index", default=2, type=int)
|
9 |
+
parser.add_argument("--filelists", nargs="+", default=["filelists/miyu_train.txt", "filelists/miyu_val.txt"])
|
10 |
+
parser.add_argument("--text_cleaners", nargs="+", default=["japanese_cleaners"])
|
11 |
+
|
12 |
+
args = parser.parse_args()
|
13 |
+
|
14 |
+
|
15 |
+
for filelist in args.filelists:
|
16 |
+
print("START:", filelist)
|
17 |
+
filepaths_and_text = load_filepaths_and_text(filelist)
|
18 |
+
for i in range(len(filepaths_and_text)):
|
19 |
+
original_text = filepaths_and_text[i][args.text_index]
|
20 |
+
cleaned_text = text._clean_text(original_text, args.text_cleaners)
|
21 |
+
filepaths_and_text[i][args.text_index] = cleaned_text
|
22 |
+
|
23 |
+
new_filelist = filelist + "." + args.out_extension
|
24 |
+
with open(new_filelist, "w", encoding="utf-8") as f:
|
25 |
+
f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Cython
|
2 |
+
librosa==0.8.0
|
3 |
+
matplotlib
|
4 |
+
numpy
|
5 |
+
scipy
|
6 |
+
tensorboard
|
7 |
+
torch
|
8 |
+
torchvision
|
9 |
+
unidecode
|
10 |
+
pyopenjtalk
|
11 |
+
protobuf
|
12 |
+
tqdm
|
run.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import IPython.display as ipd
|
3 |
+
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
import commons
|
11 |
+
import utils
|
12 |
+
from models import SynthesizerTrn
|
13 |
+
from text.symbols import symbols
|
14 |
+
from text import text_to_sequence
|
15 |
+
|
16 |
+
from scipy.io.wavfile import write
|
17 |
+
|
18 |
+
|
19 |
+
def get_text(text, hps):
|
20 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
21 |
+
if hps.data.add_blank:
|
22 |
+
text_norm = commons.intersperse(text_norm, 0)
|
23 |
+
text_norm = torch.LongTensor(text_norm)
|
24 |
+
return text_norm
|
25 |
+
|
26 |
+
config_path = "C:\\Users\\zelda\\Documents\\GitHub\\vits-finetuning\\models\\kayoko\\config.json"
|
27 |
+
model_path = "C:\\Users\\zelda\\Documents\\GitHub\\vits-finetuning\\models\\kayoko\\hayoko.pth"
|
28 |
+
hps = utils.get_hparams_from_file(config_path)
|
29 |
+
net_g = SynthesizerTrn(
|
30 |
+
len(hps.symbols),
|
31 |
+
hps.data.filter_length // 2 + 1,
|
32 |
+
hps.train.segment_size // hps.data.hop_length,
|
33 |
+
n_speakers=hps.data.n_speakers,
|
34 |
+
**hps.model).cuda()
|
35 |
+
model = net_g.eval()
|
36 |
+
pythomodel = utils.load_checkpoint(model_path, net_g, None)
|
37 |
+
|
38 |
+
speaker_id = 10 #@param {type:"number"}
|
39 |
+
text = "\u306F\u3041... \u843D\u3061\u7740\u3044\u3066\u304F\u308C\u306A\u3044\u304B\uFF1F"
|
40 |
+
noise_scale=0.6 #@param {type:"number"}
|
41 |
+
noise_scale_w=0.668 #@param {type:"number"}
|
42 |
+
length_scale=1.0 #@param {type:"number"}
|
43 |
+
stn_tst = get_text(text, hps)
|
44 |
+
with torch.no_grad():
|
45 |
+
x_tst = stn_tst.cuda().unsqueeze(0)
|
46 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
|
47 |
+
sid = torch.LongTensor([speaker_id]).cuda()
|
48 |
+
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
|
49 |
+
|
50 |
+
ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))
|