File size: 5,387 Bytes
e190970
753194f
0e74637
cf4f63b
a1d780d
e190970
 
a1d780d
 
 
 
 
 
 
 
 
 
 
 
 
753194f
e638825
a1d780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e638825
0e74637
cf4f63b
 
57845b8
 
cf4f63b
3cc58a2
a1d780d
57845b8
 
 
 
 
 
 
 
 
 
 
a1d780d
57845b8
 
 
 
 
 
 
 
 
 
 
 
 
a1d780d
57845b8
 
 
 
 
 
 
 
 
 
2e0cc12
 
a1d780d
e638825
a1d780d
e638825
 
a1d780d
e638825
a1d780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import pandas as pd
import streamlit as st
import wandb

from dashboard_utils.bubbles import get_global_metrics, get_new_bubble_data, get_leaderboard
from dashboard_utils.main_metrics import get_main_metrics
from streamlit_observable import observable
import time
import requests

import streamlit as st
from streamlit_lottie import st_lottie


def load_lottieurl(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()


# Only need to set these here as we are add controls outside of Hydralit, to customise a run Hydralit!
st.set_page_config(page_title="Dashboard", layout="wide")

st.markdown("<h1 style='text-align: center;'>Dashboard</h1>", unsafe_allow_html=True)

key_figures_margin_left, key_figures_c1, key_figures_c2, key_figures_c3, key_figures_margin_right = st.columns(
    (2, 1, 1, 1, 2)
)
chart_c1, chart_c2 = st.columns((3, 2))

lottie_url_loading = "https://assets5.lottiefiles.com/packages/lf20_OdNgAj.json"
lottie_loading = load_lottieurl(lottie_url_loading)


with key_figures_c1:
    st.caption("\# of contributing users")
    placeholder_key_figures_c1 = st.empty()
    with placeholder_key_figures_c1:
        st_lottie(lottie_loading, height=100, key="loading_key_figure_c1")

with key_figures_c2:
    st.caption("\# active users")
    placeholder_key_figures_c2 = st.empty()
    with placeholder_key_figures_c2:
        st_lottie(lottie_loading, height=100, key="loading_key_figure_c2")

with key_figures_c3:
    st.caption("Total runtime")
    placeholder_key_figures_c3 = st.empty()
    with placeholder_key_figures_c3:
        st_lottie(lottie_loading, height=100, key="loading_key_figure_c3")

with chart_c1:
    st.subheader("Metrics over time")
    st.caption("Training Loss")
    placeholder_chart_c1_1 = st.empty()
    with placeholder_chart_c1_1:
        st_lottie(lottie_loading, height=100, key="loading_c1_1")

    st.caption("Number of alive runs over time")
    placeholder_chart_c1_2 = st.empty()
    with placeholder_chart_c1_2:
        st_lottie(lottie_loading, height=100, key="loading_c1_2")

    st.caption("Number of steps")
    placeholder_chart_c1_3 = st.empty()
    with placeholder_chart_c1_3:
        st_lottie(lottie_loading, height=100, key="loading_c1_3")

with chart_c2:
    st.subheader("Global metrics")
    st.caption("Collaborative training participants")
    placeholder_chart_c2_1 = st.empty()
    with placeholder_chart_c2_1:
        st_lottie(lottie_loading, height=100, key="loading_c2_1")

    st.caption("Leaderboard")
    placeholder_chart_c2_2 = st.empty()
    with placeholder_chart_c2_2:
        st_lottie(lottie_loading, height=100, key="loading_c2_2")


wandb.login(anonymous="must")


steps, dates, losses, alive_peers = get_main_metrics()
source = pd.DataFrame({"steps": steps, "loss": losses, "alive participants": alive_peers, "date": dates})


placeholder_chart_c1_1.vega_lite_chart(
    source,
    {
        "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
        "description": "Training Loss",
        "mark": {"type": "line", "point": {"tooltip": True, "filled": False, "strokeOpacity": 0}},
        "encoding": {"x": {"field": "date", "type": "temporal"}, "y": {"field": "loss", "type": "quantitative"}},
        "config": {"axisX": {"labelAngle": -40}},
    },
    use_container_width=True,
)

placeholder_chart_c1_2.vega_lite_chart(
    source,
    {
        "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
        "description": "Alive participants",
        "mark": {"type": "line", "point": {"tooltip": True, "filled": False, "strokeOpacity": 0}},
        "encoding": {
            "x": {"field": "date", "type": "temporal"},
            "y": {"field": "alive participants", "type": "quantitative"},
        },
        "config": {"axisX": {"labelAngle": -40}},
    },
    use_container_width=True,
)
placeholder_chart_c1_3.vega_lite_chart(
    source,
    {
        "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
        "description": "Training Loss",
        "mark": {"type": "line", "point": {"tooltip": True, "filled": False, "strokeOpacity": 0}},
        "encoding": {"x": {"field": "date", "type": "temporal"}, "y": {"field": "steps", "type": "quantitative"}},
        "config": {"axisX": {"labelAngle": -40}},
    },
    use_container_width=True,
)

serialized_data, profiles = get_new_bubble_data()
df_leaderboard = get_leaderboard(serialized_data)
observable(
    "_",
    notebook="d/9ae236a507f54046",  # "@huggingface/participants-bubbles-chart",
    targets=["c_noaws"],
    redefine={"serializedData": serialized_data, "profileSimple": profiles, "width": 0},
)
placeholder_chart_c2_2.dataframe(df_leaderboard[["User", "Total time contributed"]])

global_metrics = get_global_metrics(serialized_data)

placeholder_key_figures_c1.write(f"<b>{global_metrics['num_contributing_users']}</b>", unsafe_allow_html=True)
placeholder_key_figures_c2.write(f"<b>{global_metrics['num_active_users']}</b>", unsafe_allow_html=True)
placeholder_key_figures_c3.write(f"<b>{global_metrics['total_runtime']}</b>", unsafe_allow_html=True)


with placeholder_chart_c2_1:
    observable(
        "Participants",
        notebook="d/9ae236a507f54046",  # "@huggingface/participants-bubbles-chart",
        targets=["c_noaws"],
        redefine={"serializedData": serialized_data, "profileSimple": profiles},
    )