Spaces:
Paused
Paused
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import evaluate | |
import datasets | |
import nltk | |
_CITATION = """\ | |
@article{Shen2022, | |
archivePrefix = {arXiv}, | |
arxivId = {2202.08479}, | |
author = {Shen, Lingfeng and Liu, Lemao and Jiang, Haiyun and Shi, Shuming}, | |
journal = {EMNLP 2022 - 2022 Conference on Empirical Methods in Natural Language Processing, Proceedings}, | |
eprint = {2202.08479}, | |
month = {feb}, | |
number = {1}, | |
pages = {3178--3190}, | |
title = {{On the Evaluation Metrics for Paraphrase Generation}}, | |
url = {http://arxiv.org/abs/2202.08479}, | |
year = {2022} | |
} | |
""" | |
_DESCRIPTION = """\ | |
ParaScore is a new metric to scoring the performance of paraphrase generation tasks | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good the paraphrase is | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
score: description of the first score, | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> metrics = evaluate.load("transZ/test_parascore") | |
>>> results = my_new_module.compute(references=["They work for 6 months"], predictions=["They have working for 6 months"]) | |
>>> print(results) | |
{'score': 0.85} | |
""" | |
# TODO: Define external resources urls if needed | |
BAD_WORDS_URL = "https://github.com/shadowkiller33/parascore_toolkit" | |
class test_parascore(evaluate.Metric): | |
"""ParaScore is a new metric to scoring the performance of paraphrase generation tasks""" | |
def _info(self): | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=[ | |
datasets.Features( | |
{ | |
"predictions": datasets.Value("string", id="sequence"), | |
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), | |
} | |
), | |
datasets.Features( | |
{ | |
"predictions": datasets.Value("string", id="sequence"), | |
"references": datasets.Value("string", id="sequence"), | |
} | |
), | |
], | |
# Homepage of the module for documentation | |
homepage="https://github.com/shadowkiller33/ParaScore", | |
# Additional links to the codebase or references | |
codebase_urls=["https://github.com/shadowkiller33/ParaScore"], | |
reference_urls=["https://github.com/shadowkiller33/ParaScore"] | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
self.sbert_cosine = evaluate.load('transZ/sbert_cosine') | |
def _edit(self, x, y, lang='en'): | |
if lang == 'zh': | |
x = x.replace(" ", "") | |
y = y.replace(" ", "") | |
a = len(x) | |
b = len(y) | |
dis = nltk.edit_distance(x,y) | |
return dis/max(a,b) | |
def _diverse(self, cands, sources, lang='en'): | |
diversity = [] | |
thresh = 0.35 | |
for x, y in zip(cands, sources): | |
div = self._edit(x, y, lang) | |
if div >= thresh: | |
ss = thresh | |
elif div < thresh: | |
ss = -1 + ((thresh + 1) / thresh) * div | |
diversity.append(ss) | |
return diversity | |
def _compute(self, predictions, references, model_type='sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2', lang='en'): | |
"""Returns the scores""" | |
score = self.sbert_cosine.compute(predictions=predictions, references=references, model_type=model_type) | |
sbert_score = [round(v, 2) for v in score['score']] | |
diversity = self._diverse(predictions, references, lang) | |
score = [s + 0.05 * d for s, d in zip(sbert_score, diversity)] | |
return { | |
"score": score, | |
} | |