import os from pathlib import Path import nemo.collections.asr as nemo_asr # def converter(audio_file): # converted = audio_file.split(".")[0] + "converted_.wav" # cmd_str = f"ffmpeg -y -i {audio_file} -ac 1 -ar 16000 {converted}" # os.system(cmd_str) # # os.remove(audio_file) # return converted def transcribe(audio_file): # wav_file = converter(audio_file) try: text = model_kz.transcribe([audio_file]) return text[0] except: return 'Try another file format.' language = "kz" BASE_DIR = Path(__file__).resolve(strict=True).parent model_kz = nemo_asr.models.EncDecCTCModel.restore_from(restore_path=f"{BASE_DIR}/stt_{language}_quartznet15x5.nemo")