File size: 4,698 Bytes
500c1ba
 
 
 
8411b7d
500c1ba
 
 
 
 
 
21c27da
 
500c1ba
21c27da
500c1ba
 
b619001
500c1ba
e014b5f
500c1ba
b619001
 
 
500c1ba
8411b7d
500c1ba
21c27da
500c1ba
21c27da
 
b619001
c7e9ccf
b619001
 
 
 
21c27da
 
500c1ba
21c27da
 
 
500c1ba
21c27da
 
500c1ba
b619001
21c27da
3408e43
baa9d72
21c27da
 
 
 
500c1ba
 
 
 
21c27da
500c1ba
 
 
 
 
 
 
21c27da
500c1ba
 
 
 
 
 
 
 
 
 
 
 
 
21c27da
500c1ba
 
 
 
 
 
 
 
 
 
21c27da
500c1ba
 
 
 
 
 
 
 
 
 
 
 
 
21c27da
500c1ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c27da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from huggingface_hub import login
from fastapi import FastAPI, Depends, HTTPException
import logging
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer
from services.qdrant_searcher import QdrantSearcher
from services.openai_service import generate_rag_response
from utils.auth import token_required
from dotenv import load_dotenv
import os

# Load environment variables from .env file
load_dotenv()

# Initialize FastAPI application
app = FastAPI()

# Set the cache directory for Hugging Face
os.environ["HF_HOME"] = "/tmp/huggingface_cache"

# Ensure the cache directory exists
hf_home_dir = os.environ["HF_HOME"]
if not os.path.exists(hf_home_dir):
    os.makedirs(hf_home_dir)

# Setup logging using Python's standard logging library
logging.basicConfig(level=logging.INFO)

# Load Hugging Face token from environment variable
huggingface_token = os.getenv('HUGGINGFACE_HUB_TOKEN')
if huggingface_token:
    try:
        login(token=huggingface_token, add_to_git_credential=True, write_permission=True)
        logging.info("Successfully logged into Hugging Face Hub.")
    except Exception as e:
        logging.error(f"Failed to log into Hugging Face Hub: {e}")
        raise HTTPException(status_code=500, detail="Failed to log into Hugging Face Hub.")
else:
    raise ValueError("Hugging Face token is not set. Please set the HUGGINGFACE_HUB_TOKEN environment variable.")

# Initialize the Qdrant searcher
qdrant_url = os.getenv('QDRANT_URL')
access_token = os.getenv('QDRANT_ACCESS_TOKEN')

if not qdrant_url or not access_token:
    raise ValueError("Qdrant URL or Access Token is not set. Please set the QDRANT_URL and QDRANT_ACCESS_TOKEN environment variables.")

# Initialize the SentenceTransformer model with the cache directory managed by HF_HOME
try:
    cache_folder = os.path.join(hf_home_dir, "transformers_cache")
    encoder = SentenceTransformer('nomic-ai/nomic-embed-text-v1.5', cache_folder=cache_folder)
    logging.info("Successfully loaded the SentenceTransformer model.")
except Exception as e:
    logging.error(f"Failed to load the SentenceTransformer model: {e}")
    raise HTTPException(status_code=500, detail="Failed to load the SentenceTransformer model.")

# Initialize the Qdrant searcher
searcher = QdrantSearcher(encoder, qdrant_url, access_token)

# Define the request body models
class SearchDocumentsRequest(BaseModel):
    query: str
    limit: int = 3

class GenerateRAGRequest(BaseModel):
    search_query: str

# Define the search documents endpoint
@app.post("/api/search-documents")
async def search_documents(
    body: SearchDocumentsRequest,
    credentials: tuple = Depends(token_required)
):
    customer_id, user_id = credentials

    if not customer_id or not user_id:
        logging.error("Failed to extract customer_id or user_id from the JWT token.")
        raise HTTPException(status_code=401, detail="Invalid token: missing customer_id or user_id")

    logging.info("Received request to search documents")
    try:
        hits, error = searcher.search_documents("documents", body.query, user_id, body.limit)
        
        if error:
            logging.error(f"Search documents error: {error}")
            raise HTTPException(status_code=500, detail=error)

        return hits
    except Exception as e:
        logging.error(f"Unexpected error: {e}")
        raise HTTPException(status_code=500, detail=str(e))

# Define the generate RAG response endpoint
@app.post("/api/generate-rag-response")
async def generate_rag_response_api(
    body: GenerateRAGRequest,
    credentials: tuple = Depends(token_required)
):
    customer_id, user_id = credentials

    if not customer_id or not user_id:
        logging.error("Failed to extract customer_id or user_id from the JWT token.")
        raise HTTPException(status_code=401, detail="Invalid token: missing customer_id or user_id")

    logging.info("Received request to generate RAG response")
    try:
        hits, error = searcher.search_documents("documents", body.search_query, user_id)
        
        if error:
            logging.error(f"Search documents error: {error}")
            raise HTTPException(status_code=500, detail=error)

        response, error = generate_rag_response(hits, body.search_query)
        
        if error:
            logging.error(f"Generate RAG response error: {error}")
            raise HTTPException(status_code=500, detail=error)

        return {"response": response}
    except Exception as e:
        logging.error(f"Unexpected error: {e}")
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == '__main__':
    import uvicorn
    uvicorn.run(app, host='0.0.0.0', port=8000)