|
import os |
|
|
|
|
|
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu') |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from transformers import AutoModelForTokenClassification |
|
from datasets.features import ClassLabel |
|
from transformers import AutoProcessor |
|
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D |
|
import torch |
|
from datasets import load_metric |
|
from transformers import LayoutLMv3ForTokenClassification |
|
from transformers.data.data_collator import default_data_collator |
|
|
|
|
|
from transformers import AutoModelForTokenClassification |
|
from datasets import load_dataset |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
|
|
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True) |
|
model = AutoModelForTokenClassification.from_pretrained("Theivaprakasham/layoutlmv3-finetuned-invoice") |
|
|
|
|
|
|
|
|
|
dataset = load_dataset("darentang/generated", split="test") |
|
Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png") |
|
Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png") |
|
Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png") |
|
|
|
|
|
labels = dataset.features['ner_tags'].feature.names |
|
id2label = {v: k for v, k in enumerate(labels)} |
|
label2color = { |
|
"B-ABN": 'blue', |
|
"B-BILLER": 'blue', |
|
"B-BILLER_ADDRESS": 'green', |
|
"B-BILLER_POST_CODE": 'orange', |
|
"B-DUE_DATE": "blue", |
|
"B-GST": 'green', |
|
"B-INVOICE_DATE": 'violet', |
|
"B-INVOICE_NUMBER": 'orange', |
|
"B-SUBTOTAL": 'green', |
|
"B-TOTAL": 'blue', |
|
"I-BILLER_ADDRESS": 'blue', |
|
"O": 'orange' |
|
} |
|
|
|
def unnormalize_box(bbox, width, height): |
|
return [ |
|
width * (bbox[0] / 1000), |
|
height * (bbox[1] / 1000), |
|
width * (bbox[2] / 1000), |
|
height * (bbox[3] / 1000), |
|
] |
|
|
|
|
|
def iob_to_label(label): |
|
return label |
|
|
|
|
|
|
|
def process_image(image): |
|
|
|
print(type(image)) |
|
width, height = image.size |
|
|
|
|
|
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") |
|
offset_mapping = encoding.pop('offset_mapping') |
|
|
|
|
|
outputs = model(**encoding) |
|
|
|
|
|
predictions = outputs.logits.argmax(-1).squeeze().tolist() |
|
token_boxes = encoding.bbox.squeeze().tolist() |
|
|
|
|
|
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 |
|
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] |
|
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] |
|
|
|
|
|
draw = ImageDraw.Draw(image) |
|
font = ImageFont.load_default() |
|
for prediction, box in zip(true_predictions, true_boxes): |
|
predicted_label = iob_to_label(prediction) |
|
draw.rectangle(box, outline=label2color[predicted_label]) |
|
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) |
|
|
|
return image |
|
|
|
|
|
def process_image_2(image): |
|
pass |
|
|
|
|
|
|
|
title = "Document Layout Detection" |
|
description = "Using Layout_LM_v3 model for invoice information extraction" |
|
|
|
article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>" |
|
|
|
css = """.output_image, .input_image {height: 600px !important}""" |
|
|
|
iface = gr.Interface(fn=process_image, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Image(type="pil", label="annotated image"), |
|
title=title, |
|
description=description, |
|
|
|
|
|
css=css) |
|
|
|
iface.launch(inline=False, share=False, debug=False) |
|
|
|
|