File size: 6,231 Bytes
9d55eb4
a9e7d31
e6cd808
5d26322
a9e7d31
ff6dd35
9d55eb4
 
309335b
 
1fb2014
b7f7d63
9d55eb4
a9e7d31
 
 
 
 
 
 
 
ff6dd35
e6cd808
 
 
 
 
ff6dd35
e6cd808
ff6dd35
00a86b9
a9e7d31
9d55eb4
b7f7d63
9d55eb4
 
a9e7d31
da700a9
a9e7d31
9d55eb4
ff6dd35
 
 
 
 
 
a9e7d31
e6cd808
9f1411e
da700a9
 
e6cd808
 
da700a9
a9e7d31
b7f7d63
a9e7d31
 
9d55eb4
b0042a5
b7f7d63
 
 
f548568
b7f7d63
 
 
 
 
a9e7d31
 
 
9d55eb4
 
a9e7d31
e6cd808
 
 
 
8496efd
e6cd808
 
a9e7d31
 
 
 
ff6dd35
 
da700a9
30dcff9
ff6dd35
a9e7d31
 
 
97f74a7
 
 
 
 
309335b
97f74a7
309335b
a9e7d31
 
e6cd808
5d26322
ff6dd35
e6cd808
5d26322
e6cd808
a9e7d31
 
e6cd808
a9e7d31
 
309335b
aeb451a
 
309335b
a9e7d31
f9b7714
 
 
 
97f74a7
 
 
 
 
 
 
a9e7d31
 
 
 
e6cd808
 
aeb451a
a9e7d31
 
6e3d5eb
a9e7d31
 
 
e6cd808
a9e7d31
e6cd808
da700a9
a9e7d31
 
 
 
6e3d5eb
e6cd808
a9e7d31
 
 
 
da700a9
a9e7d31
b0042a5
 
e6cd808
b0042a5
 
 
a9e7d31
b0042a5
a9e7d31
 
e6cd808
b0042a5
309335b
a9e7d31
e6cd808
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import json
import os
import shutil

import gradio as gr
from huggingface_hub import Repository
from text_generation import Client

from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css

HF_TOKEN = os.environ.get("TRL_TOKEN", None)
API_URL = os.environ.get("API_URL")


theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
if HF_TOKEN:
    try:
        shutil.rmtree("./data/")
    except:
        pass

    repo = Repository(
        local_dir="./data/", clone_from="trl-lib/stack-llama-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
    )
    repo.git_pull()

client = Client(
    API_URL,
    headers={"Authorization": f"Bearer {HF_TOKEN}"},
)

PROMPT_TEMPLATE = """Question: {prompt}\n\nAnswer:"""


def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
    with open(os.path.join("data", "prompts.jsonl"), "a") as f:
        json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
        f.write("\n")
        commit_url = repo.push_to_hub()


def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k=100, do_save=True):
    formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)

    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        top_k=top_k,
        do_sample=True,
        truncate=999,
        seed=42,
        stop_sequences=["</s>"],
    )

    stream = client.generate_stream(
        formatted_instruction,
        **generate_kwargs,
    )

    output = ""
    for response in stream:
        output += response.token.text
        yield output
    if HF_TOKEN and do_save:
        try:
            print("Pushing prompt and completion to the Hub")
            save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
        except Exception as e:
            print(e)
            
    return output


examples = [
    "A llama is in my lawn. How do I get rid of him?",
    "How do I create an array in C++ which contains all even numbers between 1 and 10?",
    "How can I sort a list in Python?",
    "How can I write a Java function to generate the nth Fibonacci number?",
    "How many helicopters can a llama eat in one sitting?",
]


def process_example(args):
    for x in generate(args):
        pass
    return x

css = ".generating {visibility: hidden}" + share_btn_css

with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
    with gr.Column():
        gr.Markdown(
            """![](https://huggingface.co/spaces/trl-lib/stack-llama/resolve/main/stackllama_logo.png)


            StackLLaMa is a 7 billion parameter language model that has been trained on pairs of questions and answers from [Stack Exchange](https://stackexchange.com) using Reinforcement Learning from Human Feedback with the [TRL library](https://github.com/lvwerra/trl). For more details, check out our [blog post](https://huggingface.co/blog/stackllama).

            Type in the box below and click the button to generate answers to your most pressing questions!
      """
        )
        do_save = gr.Checkbox(value=True, label="You consent to the storage of your prompt and generated text for research and development purposes.")
        with gr.Row():
            with gr.Column(scale=3):
                instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
                with gr.Box():
                    gr.Markdown("**Answer**")
                    output = gr.Markdown(elem_id="q-output")
                submit = gr.Button("Generate", variant="primary")
                with gr.Group(elem_id="share-btn-container"):
                    community_icon = gr.HTML(community_icon_html, visible=True)
                    loading_icon = gr.HTML(loading_icon_html, visible=True)
                    share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=True,
                    fn=process_example,
                    outputs=[output],
                )

            with gr.Column(scale=1):
                temperature = gr.Slider(
                    label="Temperature",
                    value=0.9,
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    interactive=True,
                    info="Higher values produce more diverse outputs",
                )
                max_new_tokens = gr.Slider(
                    label="Max new tokens",
                    value=128,
                    minimum=0,
                    maximum=512,
                    step=4,
                    interactive=True,
                    info="The maximum numbers of new tokens",
                )
                top_p = gr.Slider(
                    label="Top-p (nucleus sampling)",
                    value=0.90,
                    minimum=0.0,
                    maximum=1,
                    step=0.05,
                    interactive=True,
                    info="Higher values sample more low-probability tokens",
                )
                top_k = gr.Slider(
                    label="Top-k",
                    value=50,
                    minimum=0,
                    maximum=100,
                    step=2,
                    interactive=True,
                    info="Sample from top-k tokens",
                )

    submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k, do_save], outputs=[output])
    instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
    share_button.click(None, [], [], _js=share_js)

demo.queue(concurrency_count=16).launch(debug=True)