Spaces:
Runtime error
Runtime error
Bump defaults
Browse files
app.py
CHANGED
@@ -36,45 +36,6 @@ def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
|
|
36 |
commit_url = repo.push_to_hub()
|
37 |
|
38 |
|
39 |
-
# def generate(instruction, temperature=0.9, max_new_tokens=128, top_p=0.95, top_k=100):
|
40 |
-
# set_seed(42)
|
41 |
-
# formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
|
42 |
-
|
43 |
-
# temperature = float(temperature)
|
44 |
-
# top_p = float(top_p)
|
45 |
-
# streamer = TextIteratorStreamer(tokenizer)
|
46 |
-
# model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048).to(device)
|
47 |
-
|
48 |
-
# generate_kwargs = dict(
|
49 |
-
# top_p=top_p,
|
50 |
-
# temperature=temperature,
|
51 |
-
# max_new_tokens=max_new_tokens,
|
52 |
-
# do_sample=True,
|
53 |
-
# top_k=top_k,
|
54 |
-
# eos_token_id=tokenizer.eos_token_id,
|
55 |
-
# pad_token_id=tokenizer.eos_token_id,
|
56 |
-
# )
|
57 |
-
# t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
|
58 |
-
# t.start()
|
59 |
-
|
60 |
-
# output = ""
|
61 |
-
# hidden_output = ""
|
62 |
-
# for new_text in streamer:
|
63 |
-
# # skip streaming until new text is available
|
64 |
-
# if len(hidden_output) <= len(formatted_instruction):
|
65 |
-
# hidden_output += new_text
|
66 |
-
# continue
|
67 |
-
# # replace eos token
|
68 |
-
# # if tokenizer.eos_token in new_text:
|
69 |
-
# # new_text = new_text.replace(tokenizer.eos_token, "")
|
70 |
-
# output += new_text
|
71 |
-
# yield output
|
72 |
-
# if HF_TOKEN:
|
73 |
-
# print("Pushing prompt and completion to the Hub")
|
74 |
-
# save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
|
75 |
-
# return output
|
76 |
-
|
77 |
-
|
78 |
def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k=100):
|
79 |
formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
|
80 |
|
@@ -106,38 +67,6 @@ def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k
|
|
106 |
|
107 |
return output
|
108 |
|
109 |
-
# streamer = TextIteratorStreamer(tokenizer)
|
110 |
-
# model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048).to(device)
|
111 |
-
|
112 |
-
# generate_kwargs = dict(
|
113 |
-
# top_p=top_p,
|
114 |
-
# temperature=temperature,
|
115 |
-
# max_new_tokens=max_new_tokens,
|
116 |
-
# do_sample=True,
|
117 |
-
# top_k=top_k,
|
118 |
-
# # eos_token_id=tokenizer.eos_token_id,
|
119 |
-
# # pad_token_id=tokenizer.eos_token_id,
|
120 |
-
# )
|
121 |
-
# t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
|
122 |
-
# t.start()
|
123 |
-
|
124 |
-
# output = ""
|
125 |
-
# hidden_output = ""
|
126 |
-
# for new_text in streamer:
|
127 |
-
# # skip streaming until new text is available
|
128 |
-
# if len(hidden_output) <= len(formatted_instruction):
|
129 |
-
# hidden_output += new_text
|
130 |
-
# continue
|
131 |
-
# # replace eos token
|
132 |
-
# # if tokenizer.eos_token in new_text:
|
133 |
-
# # new_text = new_text.replace(tokenizer.eos_token, "")
|
134 |
-
# output += new_text
|
135 |
-
# yield output
|
136 |
-
if HF_TOKEN:
|
137 |
-
print("Pushing prompt and completion to the Hub")
|
138 |
-
save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
|
139 |
-
# return output
|
140 |
-
|
141 |
|
142 |
examples = [
|
143 |
"A llama is in my lawn. How do I get rid of him?",
|
@@ -193,7 +122,7 @@ with gr.Blocks(theme=theme, analytics_enabled=False, css=".generating {visibilit
|
|
193 |
)
|
194 |
max_new_tokens = gr.Slider(
|
195 |
label="Max new tokens",
|
196 |
-
value=
|
197 |
minimum=0,
|
198 |
maximum=2048,
|
199 |
step=4,
|
|
|
36 |
commit_url = repo.push_to_hub()
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k=100):
|
40 |
formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
|
41 |
|
|
|
67 |
|
68 |
return output
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
examples = [
|
72 |
"A llama is in my lawn. How do I get rid of him?",
|
|
|
122 |
)
|
123 |
max_new_tokens = gr.Slider(
|
124 |
label="Max new tokens",
|
125 |
+
value=256,
|
126 |
minimum=0,
|
127 |
maximum=2048,
|
128 |
step=4,
|