import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import os
import re
from polyglot.detect import Detector
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "LLaMAX/LLaMAX3-8B-Alpaca"
RELATIVE_MODEL="LLaMAX/LLaMAX3-8B"
TITLE = "
LLaMAX3-Translator
"
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.float16,
device_map="auto",
quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def lang_detector(text):
min_chars = 5
if len(text) < min_chars:
return "Input text too short"
try:
detector = Detector(text).language
lang_info = str(detector)
code = re.search(r"name: (\w+)", lang_info).group(1)
return code
except Exception as e:
return f"ERROR:{str(e)}"
def Prompt_template(inst, prompt, query, src_language, trg_language):
inst = inst.format(src_language=src_language, trg_language=trg_language)
instruction = f"`{inst}`"
prompt = (
f'{prompt}'
f'### Instruction:\n{instruction}\n'
f'### Input:\n{query}\n### Response:'
)
return prompt
# Unfinished
def chunk_text():
pass
@spaces.GPU()
def translate(
source_text: str,
source_lang: str,
target_lang: str,
inst: str,
prompt: str,
max_length: int,
temperature: float,
top_p: float,
rp: float):
print(f'Text is - {source_text}')
prompt = Prompt_template(inst, prompt, source_text, source_lang, target_lang)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
generate_kwargs = dict(
input_ids=input_ids,
max_length=max_length,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=rp,
)
outputs = model.generate(**generate_kwargs)
resp = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
yield resp[len(prompt):]
CSS = """
h1 {
text-align: center;
display: block;
height: 10vh;
align-content: center;
}
footer {
visibility: hidden;
}
"""
LICENSE = """
Model: LLaMAX3-8B-Alpaca
"""
LANG_LIST = ['Akrikaans', 'Amharic', 'Arabic', 'Armenian', 'Assamese', 'Asturian', 'Azerbaijani', \
'Belarusian', 'Bengali', 'Bosnian', 'Bulgarian', 'Burmese', \
'Catalan', 'Cebuano', 'Simplified Chinese', 'Traditional Chinese', 'Croatian', 'Czech', \
'Danish', 'Dutch', 'English', 'Estonian', 'Filipino', 'Finnish', 'French', 'Fulah', \
'Galician', 'Ganda', 'Georgian', 'German', 'Greek', 'Gujarati', \
'Hausa', 'Hebrew', 'Hindi', 'Hungarian', \
'Icelandic', 'Igbo', 'Indonesian', 'Irish', 'Italian', \
'Japanese', 'Javanese', \
'Kabuverdianu', 'Kamba', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Kyrgyz', \
'Lao', 'Latvian', 'Lingala', 'Lithuanian', 'Luo', 'Luxembourgish', \
'Macedonian', 'Malay', 'Malayalam', 'Maltese', 'Maori', 'Marathi', 'Mongolian', \
'Nepali', 'Northern', 'Norwegian', 'Nyanja', \
'Occitan', 'Oriya', 'Oromo', \
'Pashto', 'Persian', 'Polish', 'Portuguese', 'Punjabi', \
'Romanian', 'Russian', \
'Serbian', 'Shona', 'Sindhi', 'Slovak', 'Slovenian', 'Somali', 'Sorani', 'Spanish', 'Swahili', 'Swedish', \
'Tajik', 'Tamil', 'Telugu', 'Thai', 'Turkish', \
'Ukrainian', 'Umbundu', 'Urdu', 'Uzbek', \
'Vietnamese', 'Welsh', 'Wolof', 'Xhosa', 'Yoruba', 'Zulu']
chatbot = gr.Chatbot(height=600)
with gr.Blocks(theme="soft", css=CSS) as demo:
gr.Markdown(TITLE)
with gr.Row():
with gr.Column(scale=1):
source_lang = gr.Textbox(
label="Source Lang(Auto-Detect)",
value="English",
)
target_lang = gr.Dropdown(
label="Target Lang",
value="Spanish",
choices=LANG_LIST,
)
max_length = gr.Slider(
label="Max Length",
minimum=512,
maximum=8192,
value=4096,
step=8,
)
temperature = gr.Slider(
label="Temperature",
minimum=0,
maximum=1,
value=0.3,
step=0.1,
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
)
rp = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
)
with gr.Accordion("Advanced Options", open=False):
inst = gr.Textbox(
label="Instruction",
value="Translate the following sentences from {src_language} to {trg_language}.",
lines=3,
)
prompt = gr.Textbox(
label="Prompt",
value=""" 'Below is an instruction that describes a task, paired with an input that provides further context. '
'Write a response that appropriately completes the request.\n' """,
lines=8,
)
with gr.Column(scale=4):
source_text = gr.Textbox(
label="Source Text",
value="LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. "+\
"LLaMAX supports translation between more than 100 languages, "+\
"surpassing the performance of similarly scaled LLMs.",
lines=10,
)
output_text = gr.Textbox(
label="Output Text",
lines=10,
show_copy_button=True,
)
with gr.Row():
submit = gr.Button(value="Submit")
clear = gr.ClearButton([source_text, output_text])
gr.Markdown(LICENSE)
source_text.change(lang_detector, source_text, source_lang)
submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text])
if __name__ == "__main__":
demo.launch()