multimodalart HF staff commited on
Commit
8a6d38a
1 Parent(s): 5ae33c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -4
app.py CHANGED
@@ -164,10 +164,13 @@ def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, sdxl_lora
164
 
165
  full_path_lora = state_dicts[repo_name]["saved_name"]
166
  loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
167
- cross_attention_kwargs = None
168
  if last_lora != repo_name:
 
 
169
  pipe.load_lora_weights(loaded_state_dict, adapter_name=sdxl_loras[selected_state.index]["repo"])
170
- pipe.set_adapters([sdxl_loras[selected_state.index]["repo"], "lcm_lora"], adapter_weights=[0.8, 1.0])
 
171
  is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
172
  if(is_pivotal):
173
  #Add the textual inversion embeddings from pivotal tuning models
@@ -182,7 +185,8 @@ def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, sdxl_lora
182
  prompt=prompt,
183
  negative_prompt=negative,
184
  num_inference_steps=4,
185
- guidance_scale=0.5,
 
186
  ).images[0]
187
 
188
  last_lora = repo_name
@@ -207,7 +211,8 @@ with gr.Blocks(css="custom.css") as demo:
207
  gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
208
  gr_sdxl_loras_new = gr.State(value=sdxl_loras_raw_new)
209
  title = gr.HTML(
210
- """<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA">LCM LoRA the Explorer</h1>
 
211
  Combine loading an [LCM LoRA](#) with your favorite SDXL LoRa and run LoRAs in only 4 steps. Check out our blog to see how this works.
212
  """,
213
  elem_id="title",
 
164
 
165
  full_path_lora = state_dicts[repo_name]["saved_name"]
166
  loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
167
+ #cross_attention_kwargs = None
168
  if last_lora != repo_name:
169
+ #if(last_fused):
170
+ #pipe.unfuse_lora()
171
  pipe.load_lora_weights(loaded_state_dict, adapter_name=sdxl_loras[selected_state.index]["repo"])
172
+ pipe.set_adapters([sdxl_loras[selected_state.index]["repo"], "lcm_lora"], adapter_weights=[lora_scale, 1.0])
173
+ #last_fused = True
174
  is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
175
  if(is_pivotal):
176
  #Add the textual inversion embeddings from pivotal tuning models
 
185
  prompt=prompt,
186
  negative_prompt=negative,
187
  num_inference_steps=4,
188
+ guidance_scale=0.5
189
+
190
  ).images[0]
191
 
192
  last_lora = repo_name
 
211
  gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
212
  gr_sdxl_loras_new = gr.State(value=sdxl_loras_raw_new)
213
  title = gr.HTML(
214
+ """<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"><i>Experimental</i> LCM LoRA the Explorer</h1>
215
+ <br>
216
  Combine loading an [LCM LoRA](#) with your favorite SDXL LoRa and run LoRAs in only 4 steps. Check out our blog to see how this works.
217
  """,
218
  elem_id="title",