tsobolev's picture
Update app.py
1d273b4
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", 'gradio==3.40.1'])
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("tsobolev/speecht5_finetuned_voxpopuli_fi")
model = SpeechT5ForTextToSpeech.from_pretrained("tsobolev/speecht5_finetuned_voxpopuli_fi").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7000]["xvector"]).unsqueeze(0)
en2fi_pipeline = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fi")
print("gradio version is ",gr.__version__)
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
fi_translation = en2fi_pipeline(outputs["text"])
text = fi_translation[0]['translation_text']
replacements = [
("ä", "ae"),
("ö", "oe"),
]
for src, dst in replacements:
text = text.replace(src, dst)
print(text)
return text
def synthesise(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language, supported by the whisper, to target speech in Finnish.
Demo uses:
* OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation
* Language Technology at the University of Helsinki en-fi model [Helsinki-NLP](https://huggingface.co/Helsinki-NLP/opus-mt-en-fi)
* Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model fine-tuned on subset of [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) dataset for text-to-speech
* replacements: ä => ae , ö => oe
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()