Spaces:
Runtime error
Runtime error
File size: 5,845 Bytes
6928524 0c89505 f6e063e d13e659 ac92c82 6928524 c8c8a5a ac92c82 c8c8a5a d13e659 ac92c82 6928524 24c049f ac92c82 6928524 1496a14 6928524 88d771e 6928524 7e9e266 1496a14 7e9e266 1496a14 6928524 eac1956 6928524 30dbf3f 6928524 7e9e266 6928524 3da0a3a 6928524 3da0a3a 6928524 30dbf3f 6928524 30dbf3f 6928524 ca25ee1 6928524 f50b593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import torch
import torch.nn as nn
import numpy as np
from torchvision import models, transforms
import time
import os
import copy
import pickle
from PIL import Image
import datetime
import gdown
import urllib.request
import gradio as gr
import markdown
# load model state and class names from gdrive
# issue accessing the link. updated permissions
#https://drive.google.com/file/d/1m9C-WMfKRDCmScxTh8JmcoFtymxAqjS3/view?usp=sharing
# url = 'https://drive.google.com/uc?id=1m9C-WMfKRDCmScxTh8JmcoFtymxAqjS3'
path_class_names = "./class_names_restnet_leeds_butterfly.pkl"
# MAX_TRIES = 10
# i = 0
# while(i<MAX_TRIES):
# try:
# gdown.download(url, path_class_names, quiet=False)
# break
# except:
# pass
# i += 1
# gdown.download(url, path_class_names, quiet=False)
#https://drive.google.com/file/d/1qxaWnYwLIwWGrGg9uehG7h2W227SXGKq/view?usp=sharing
# url = 'https://drive.google.com/uc?id=1qxaWnYwLIwWGrGg9uehG7h2W227SXGKq'
path_model = "./model_state_restnet_leeds_butterfly.pth"
# gdown.download(url, path_model, quiet=False)
# i = 0
# while(i<MAX_TRIES):
# try:
# gdown.download(url, path_model, quiet=False)
# break
# except:
# pass
# i += 1
# example images
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Red_postman_butterfly_%28Heliconius_erato%29.jpg/1599px-Red_postman_butterfly_%28Heliconius_erato%29.jpg"
path_input = "./h_erato.jpg"
urllib.request.urlretrieve(url, filename=path_input)
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/6/63/Monarch_In_May.jpg/1024px-Monarch_In_May.jpg"
path_input = "./d_plexippus.jpg"
urllib.request.urlretrieve(url, filename=path_input)
url = "https://drive.google.com/uc?id=1A7WgDrQ_RLO6JOQiYhkH_hj_EKcbpmOl"
path_input = "./v_cardui.jpg"
urllib.request.urlretrieve(url, filename=path_input)
url = "https://drive.google.com/uc?id=1CiWShQYIm2N0fkVaWJpftlXZFqwjsXhA"
path_input = "./p_cresphontes.jpg"
urllib.request.urlretrieve(url, filename=path_input)
url = "https://drive.google.com/uc?id=1r8rbkUwTSIZL0MQVgU-WjDGwvLXuwYPG"
path_input = "./p_rapae.jpg"
urllib.request.urlretrieve(url, filename=path_input)
# normalisation
data_transforms_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
class_names = pickle.load(open(path_class_names, "rb"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, len(class_names))
model_ft = model_ft.to(device)
model_ft.load_state_dict(copy.deepcopy(torch.load(path_model,device)))
# Proper labeling
id_to_name = {
'001_Danaus Plexippus': 'Danaus plexippus - Monarch',
'002_Heliconius Charitonius': 'Heliconius charitonius - Zebra Longwing',
'003_Heliconius Erato': 'Heliconius erato - Red Postman',
'004_Junonia Coenia': 'Junonia coenia - Common Buckeye',
'005_Lycaena Phlaeas': 'Lycaena phlaeas - Small Copper',
'006_Nymphalis Antiopa': 'Nymphalis antiopa - Mourning Cloak',
'007_Papilio Cresphontes': 'Papilio cresphontes - Giant Swallowtail',
'008_Pieris Rapae': 'Pieris rapae - Cabbage White',
'009_Vanessa Atalanta': 'Vanessa atalanta - Red Admiral',
'010_Vanessa Cardui': 'Vanessa cardui - Painted Lady',
}
def do_inference(img):
img_t = data_transforms_test(img)
batch_t = torch.unsqueeze(img_t, 0)
model_ft.eval()
# We don't need gradients for test, so wrap in
# no_grad to save memory
with torch.no_grad():
batch_t = batch_t.to(device)
# forward propagation
output = model_ft( batch_t)
# get prediction
probs = torch.nn.functional.softmax(output, dim=1)
output = torch.argsort(probs, dim=1, descending=True).cpu().numpy()[0].astype(int)
probs = probs.cpu().numpy()[0]
probs = probs[output]
labels = np.array(class_names)[output]
if(probs[0] < 0.5):
return {"No butterfly":1.0}
else:
return {id_to_name[labels[i]]: round(float(probs[i]),2) for i in range(len(labels))}
im = gr.inputs.Image(shape=(512, 512), image_mode='RGB',
invert_colors=False, source="upload",
type="pil")
title = "Butterfly Classification Demo"
description = "A pretrained ResNet18 CNN trained on the Leeds Butterfly Dataset. Libraries: PyTorch, Gradio."
examples = [['./h_erato.jpg'],['d_plexippus.jpg'],['v_cardui.jpg'],['p_cresphontes.jpg'],['p_rapae.jpg']]
article_text = markdown.markdown('''
<h1 style="color:white">PyTorch image classification - A pretrained ResNet18 CNN trained on the <a href="http://www.josiahwang.com/dataset/leedsbutterfly/" target="_blank">Leeds Butterfly Dataset</a></h1>
<br>
<p>The Leeds Butterfly Dataset consists of 832 images in 10 classes:</p>
<ul>
<li>Danaus plexippus - Monarch</li>
<li>Heliconius charitonius - Zebra Longwing</li>
<li>Heliconius erato - Red Postman</li>
<li>Lycaena phlaeas - Small Copper</li>
<li>Junonia coenia - Common Buckeye</li>
<li>Nymphalis antiopa - Mourning Cloak</li>
<li>Papilio cresphontes - Giant Swallowtail</li>
<li>Pieris rapae - Cabbage White</li>
<li>Vanessa atalanta - Red Admiral</li>
<li>Vanessa cardui - Painted Lady</li>
</ul>
<br>
<p>Part of a dissertation project. Author: <a href="https://github.com/ttheland" target="_blank">ttheland</a></p>
''')
iface = gr.Interface(
do_inference,
im,
gr.outputs.Label(num_top_classes=3),
live=False,
interpretation=None,
title=title,
description=description,
article= article_text,
examples=examples,
theme="dark-peach"
)
iface.test_launch()
iface.launch(share=True, enable_queue=True) |