File size: 6,984 Bytes
929f451
 
 
 
 
 
 
 
 
 
 
 
eb93b7d
 
98a1feb
929f451
774a99f
 
 
 
 
 
36a6b78
98a1feb
 
 
 
 
 
 
 
929f451
 
ae13cd7
929f451
 
 
 
 
 
 
 
 
 
 
 
 
 
ac5c2a4
 
 
 
929f451
774a99f
929f451
 
 
 
774a99f
929f451
 
 
 
 
 
 
def8bfd
b62208c
 
 
 
 
929f451
def8bfd
84aa40a
ac5c2a4
eb45374
def8bfd
929f451
eb45374
def8bfd
929f451
eb45374
 
929f451
eb45374
 
929f451
ac5c2a4
929f451
ac5c2a4
 
929f451
ac5c2a4
929f451
98a1feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb45374
98a1feb
 
eb45374
98a1feb
 
eb45374
98a1feb
 
eb45374
 
98a1feb
 
 
 
 
 
 
 
 
774a99f
 
 
 
98a1feb
774a99f
 
 
 
 
 
 
 
 
b62208c
774a99f
 
 
 
 
 
 
eb45374
774a99f
 
eb45374
774a99f
 
eb45374
774a99f
 
eb45374
 
774a99f
 
 
 
 
 
 
 
eb93b7d
929f451
 
 
eb93b7d
 
 
 
 
 
 
 
 
af03c71
929f451
 
98a1feb
 
 
 
 
 
 
 
 
774a99f
 
eb93b7d
 
 
774a99f
929f451
f1a7938
774a99f
 
98a1feb
 
eb93b7d
 
 
774a99f
3d450b6
774a99f
 
98a1feb
 
 
 
 
 
3d450b6
98a1feb
 
774a99f
98a1feb
ad10edb
774a99f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import gradio as gr

import torch
from PIL import Image
import numpy as np
import random
from einops import rearrange
import matplotlib.pyplot as plt
from torchvision.transforms import v2

from model import MAE_ViT, MAE_Encoder, MAE_Decoder, MAE_Encoder_FeatureExtractor

path_1  = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
path_2  = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
path_3  = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
device = torch.device("cpu")

model_name = "model/no_mode/vit-t-mae-pretrain.pt"
model_no_mode = torch.load(model_name, map_location='cpu')
model_no_mode.eval()
model_no_mode.to(device)

model_name = "model/bottom_25/vit-t-mae-pretrain.pt"
model_pca_mode_bottom = torch.load(model_name, map_location='cpu')
model_pca_mode_bottom.eval()
model_pca_mode_bottom.to(device)

model_name = "model/top_75/vit-t-mae-pretrain.pt"
model_pca_mode_top = torch.load(model_name, map_location='cpu')
model_pca_mode_top.eval()
model_pca_mode_top.to(device)

transform = v2.Compose([
        v2.Resize((96, 96)),
        v2.ToTensor(), 
        v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
    ])

# Load and Preprocess the Image
def load_image(image_path, transform):
    img = Image.open(image_path).convert('RGB')
    img = transform(img).unsqueeze(0)  # Add batch dimension
    return img

def show_image(img, title):
    img = rearrange(img, "c h w -> h w c")
    img = (img.cpu().detach().numpy() + 1) / 2  # Normalize to [0, 1]

    plt.imshow(img)
    plt.axis('off')
    plt.title(title)

# Visualize a Single Image
def visualize_single_image_no_mode(image_path):
    img = load_image(image_path, transform).to(device)
    
    # Run inference
    with torch.no_grad():
        predicted_img, mask = model_no_mode(img)
    
    # Convert the tensor back to a displayable image
    # masked image
    im_masked = img * (1 - mask)

    # MAE reconstruction pasted with visible patches
    im_paste = img * (1 - mask) + predicted_img * mask

    # remove the batch dimension
    img = img[0]
    im_masked = im_masked[0]
    predicted_img = predicted_img[0]
    im_paste = im_paste[0]
    
    # make the plt figure larger
    plt.figure(figsize=(18, 8))

    plt.subplot(1, 3, 1)
    show_image(img, "original")

    plt.subplot(1, 3, 2)
    show_image(im_masked, "masked")

    # plt.subplot(1, 4, 3)
    # show_image(predicted_img, "reconstruction")

    plt.subplot(1, 3, 3)
    show_image(im_paste, "reconstruction")

    plt.tight_layout()

    # convert the plt figure to a numpy array
    plt.savefig("output.png")

    return np.array(plt.imread("output.png"))

def visualize_single_image_pca_mode_bottom(image_path):
    img = load_image(image_path, transform).to(device)
    
    # Run inference
    with torch.no_grad():
        predicted_img, mask = model_pca_mode_bottom(img)
    
    # Convert the tensor back to a displayable image
    # masked image
    im_masked = img * (1 - mask)

    # MAE reconstruction pasted with visible patches
    im_paste = img * (1 - mask) + predicted_img * mask

    # remove the batch dimension
    img = img[0]
    im_masked = im_masked[0]
    predicted_img = predicted_img[0]
    im_paste = im_paste[0]
    
    # make the plt figure larger
    plt.figure(figsize=(18, 8))

    plt.subplot(1, 3, 1)
    show_image(img, "original")

    plt.subplot(1, 3, 2)
    show_image(im_masked, "masked")

    plt.subplot(1, 3, 3)
    show_image(predicted_img, "reconstruction")

    # plt.subplot(1, 4, 4)
    # show_image(im_paste, "reconstruction + visible")

    plt.tight_layout()

    # convert the plt figure to a numpy array
    plt.savefig("output.png")

    return np.array(plt.imread("output.png"))

def visualize_single_image_pca_mode_top(image_path):
    img = load_image(image_path, transform).to(device)
    
    # Run inference
    with torch.no_grad():
        predicted_img, mask = model_pca_mode_top(img)
    
    # Convert the tensor back to a displayable image
    # masked image
    im_masked = img * (1 - mask)

    # MAE reconstruction pasted with visible patches
    im_paste = img * (1 - mask) + predicted_img * mask

    # remove the batch dimension
    img = img[0]
    im_masked = im_masked[0]
    predicted_img = predicted_img[0]
    im_paste = im_paste[0]
    
    # make the plt figure larger
    plt.figure(figsize=(18, 8))

    plt.subplot(1, 3, 1)
    show_image(img, "original")

    plt.subplot(1, 3, 2)
    show_image(im_masked, "masked")

    plt.subplot(1, 3, 3)
    show_image(predicted_img, "reconstruction")

    # plt.subplot(1, 4, 4)
    # show_image(im_paste, "reconstruction + visible")

    plt.tight_layout()

    # convert the plt figure to a numpy array
    plt.savefig("output.png")

    return np.array(plt.imread("output.png"))

inputs_image_1 = [
    gr.components.Image(type="filepath", label="Input Image"),
]

outputs_image_1 = [
    gr.components.Image(type="numpy", label="Output Image"),
]

inputs_image_2 = [
    gr.components.Image(type="filepath", label="Input Image"),
]

outputs_image_2 = [
    gr.components.Image(type="numpy", label="Output Image"),
]

inputs_image_3 = [
    gr.components.Image(type="filepath", label="Input Image"),
]

outputs_image_3 = [
    gr.components.Image(type="numpy", label="Output Image"),
]


inference_no_mode = gr.Interface(
    fn=visualize_single_image_no_mode,
    inputs=inputs_image_1,
    outputs=outputs_image_1,
    examples=path_1,
    cache_examples = False,
    title="MAE-ViT Image Reconstruction",
    description="This is a demo of the MAE-ViT model for image reconstruction. The model is trained without PCA mode. It was trained on the STL-10 dataset. Check out the huggingface model card and the github repository for more information. https://huggingface.co/turhancan97/MAE-Models and https://github.com/turhancan97/Learning-by-Reconstruction-with-MAE",
)

inference_pca_mode_bottom = gr.Interface(
    fn=visualize_single_image_pca_mode_bottom,
    inputs=inputs_image_2,
    outputs=outputs_image_2,
    examples=path_2,
    title="MAE-ViT Image Reconstruction",
    description="This is a demo of the MAE-ViT model for image reconstruction. The model is trained with PCA mode (bottom 25%). It was trained on the STL-10 dataset.",
)

inference_pca_mode_top = gr.Interface(
    fn=visualize_single_image_pca_mode_top,
    inputs=inputs_image_3,
    outputs=outputs_image_3,
    examples=path_3,
    title="MAE-ViT Image Reconstruction",
    description="This is a demo of the MAE-ViT model for image reconstruction. The model is trained with PCA mode (top 75%). It was trained on the STL-10 dataset.",
)

gr.TabbedInterface(
    [inference_no_mode, inference_pca_mode_bottom, inference_pca_mode_top],
    tab_names=['Normal Mode', 'PCA Mode (Bottom 25%)', 'PCA Mode (Top 75%)']
).queue().launch()