Spaces:
Sleeping
Sleeping
File size: 6,984 Bytes
929f451 eb93b7d 98a1feb 929f451 774a99f 36a6b78 98a1feb 929f451 ae13cd7 929f451 ac5c2a4 929f451 774a99f 929f451 774a99f 929f451 def8bfd b62208c 929f451 def8bfd 84aa40a ac5c2a4 eb45374 def8bfd 929f451 eb45374 def8bfd 929f451 eb45374 929f451 eb45374 929f451 ac5c2a4 929f451 ac5c2a4 929f451 ac5c2a4 929f451 98a1feb eb45374 98a1feb eb45374 98a1feb eb45374 98a1feb eb45374 98a1feb 774a99f 98a1feb 774a99f b62208c 774a99f eb45374 774a99f eb45374 774a99f eb45374 774a99f eb45374 774a99f eb93b7d 929f451 eb93b7d af03c71 929f451 98a1feb 774a99f eb93b7d 774a99f 929f451 f1a7938 774a99f 98a1feb eb93b7d 774a99f 3d450b6 774a99f 98a1feb 3d450b6 98a1feb 774a99f 98a1feb ad10edb 774a99f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
import random
from einops import rearrange
import matplotlib.pyplot as plt
from torchvision.transforms import v2
from model import MAE_ViT, MAE_Encoder, MAE_Decoder, MAE_Encoder_FeatureExtractor
path_1 = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
path_2 = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
path_3 = [['images/cat.jpg'], ['images/dog.jpg'], ['images/horse.jpg'], ['images/airplane.jpg'], ['images/truck.jpg']]
device = torch.device("cpu")
model_name = "model/no_mode/vit-t-mae-pretrain.pt"
model_no_mode = torch.load(model_name, map_location='cpu')
model_no_mode.eval()
model_no_mode.to(device)
model_name = "model/bottom_25/vit-t-mae-pretrain.pt"
model_pca_mode_bottom = torch.load(model_name, map_location='cpu')
model_pca_mode_bottom.eval()
model_pca_mode_bottom.to(device)
model_name = "model/top_75/vit-t-mae-pretrain.pt"
model_pca_mode_top = torch.load(model_name, map_location='cpu')
model_pca_mode_top.eval()
model_pca_mode_top.to(device)
transform = v2.Compose([
v2.Resize((96, 96)),
v2.ToTensor(),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
# Load and Preprocess the Image
def load_image(image_path, transform):
img = Image.open(image_path).convert('RGB')
img = transform(img).unsqueeze(0) # Add batch dimension
return img
def show_image(img, title):
img = rearrange(img, "c h w -> h w c")
img = (img.cpu().detach().numpy() + 1) / 2 # Normalize to [0, 1]
plt.imshow(img)
plt.axis('off')
plt.title(title)
# Visualize a Single Image
def visualize_single_image_no_mode(image_path):
img = load_image(image_path, transform).to(device)
# Run inference
with torch.no_grad():
predicted_img, mask = model_no_mode(img)
# Convert the tensor back to a displayable image
# masked image
im_masked = img * (1 - mask)
# MAE reconstruction pasted with visible patches
im_paste = img * (1 - mask) + predicted_img * mask
# remove the batch dimension
img = img[0]
im_masked = im_masked[0]
predicted_img = predicted_img[0]
im_paste = im_paste[0]
# make the plt figure larger
plt.figure(figsize=(18, 8))
plt.subplot(1, 3, 1)
show_image(img, "original")
plt.subplot(1, 3, 2)
show_image(im_masked, "masked")
# plt.subplot(1, 4, 3)
# show_image(predicted_img, "reconstruction")
plt.subplot(1, 3, 3)
show_image(im_paste, "reconstruction")
plt.tight_layout()
# convert the plt figure to a numpy array
plt.savefig("output.png")
return np.array(plt.imread("output.png"))
def visualize_single_image_pca_mode_bottom(image_path):
img = load_image(image_path, transform).to(device)
# Run inference
with torch.no_grad():
predicted_img, mask = model_pca_mode_bottom(img)
# Convert the tensor back to a displayable image
# masked image
im_masked = img * (1 - mask)
# MAE reconstruction pasted with visible patches
im_paste = img * (1 - mask) + predicted_img * mask
# remove the batch dimension
img = img[0]
im_masked = im_masked[0]
predicted_img = predicted_img[0]
im_paste = im_paste[0]
# make the plt figure larger
plt.figure(figsize=(18, 8))
plt.subplot(1, 3, 1)
show_image(img, "original")
plt.subplot(1, 3, 2)
show_image(im_masked, "masked")
plt.subplot(1, 3, 3)
show_image(predicted_img, "reconstruction")
# plt.subplot(1, 4, 4)
# show_image(im_paste, "reconstruction + visible")
plt.tight_layout()
# convert the plt figure to a numpy array
plt.savefig("output.png")
return np.array(plt.imread("output.png"))
def visualize_single_image_pca_mode_top(image_path):
img = load_image(image_path, transform).to(device)
# Run inference
with torch.no_grad():
predicted_img, mask = model_pca_mode_top(img)
# Convert the tensor back to a displayable image
# masked image
im_masked = img * (1 - mask)
# MAE reconstruction pasted with visible patches
im_paste = img * (1 - mask) + predicted_img * mask
# remove the batch dimension
img = img[0]
im_masked = im_masked[0]
predicted_img = predicted_img[0]
im_paste = im_paste[0]
# make the plt figure larger
plt.figure(figsize=(18, 8))
plt.subplot(1, 3, 1)
show_image(img, "original")
plt.subplot(1, 3, 2)
show_image(im_masked, "masked")
plt.subplot(1, 3, 3)
show_image(predicted_img, "reconstruction")
# plt.subplot(1, 4, 4)
# show_image(im_paste, "reconstruction + visible")
plt.tight_layout()
# convert the plt figure to a numpy array
plt.savefig("output.png")
return np.array(plt.imread("output.png"))
inputs_image_1 = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image_1 = [
gr.components.Image(type="numpy", label="Output Image"),
]
inputs_image_2 = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image_2 = [
gr.components.Image(type="numpy", label="Output Image"),
]
inputs_image_3 = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image_3 = [
gr.components.Image(type="numpy", label="Output Image"),
]
inference_no_mode = gr.Interface(
fn=visualize_single_image_no_mode,
inputs=inputs_image_1,
outputs=outputs_image_1,
examples=path_1,
cache_examples = False,
title="MAE-ViT Image Reconstruction",
description="This is a demo of the MAE-ViT model for image reconstruction. The model is trained without PCA mode. It was trained on the STL-10 dataset. Check out the huggingface model card and the github repository for more information. https://huggingface.co/turhancan97/MAE-Models and https://github.com/turhancan97/Learning-by-Reconstruction-with-MAE",
)
inference_pca_mode_bottom = gr.Interface(
fn=visualize_single_image_pca_mode_bottom,
inputs=inputs_image_2,
outputs=outputs_image_2,
examples=path_2,
title="MAE-ViT Image Reconstruction",
description="This is a demo of the MAE-ViT model for image reconstruction. The model is trained with PCA mode (bottom 25%). It was trained on the STL-10 dataset.",
)
inference_pca_mode_top = gr.Interface(
fn=visualize_single_image_pca_mode_top,
inputs=inputs_image_3,
outputs=outputs_image_3,
examples=path_3,
title="MAE-ViT Image Reconstruction",
description="This is a demo of the MAE-ViT model for image reconstruction. The model is trained with PCA mode (top 75%). It was trained on the STL-10 dataset.",
)
gr.TabbedInterface(
[inference_no_mode, inference_pca_mode_bottom, inference_pca_mode_top],
tab_names=['Normal Mode', 'PCA Mode (Bottom 25%)', 'PCA Mode (Top 75%)']
).queue().launch() |