import time import pandas as pd import streamlit as st from transformers import pipeline from constants import tweet_generator_prompt, absa_prompt # Adjust the layout for wider containers st.set_page_config(layout="wide") # @st.cache_resource def load_model(): classification_pipe = pipeline( "text-classification", model="tweetpie/toxic-content-detector", top_k=None) absa_pipe = pipeline("text2text-generation", model="tweetpie/stance-aware-absa") tweet_generation_pipe = pipeline("text2text-generation", model="tweetpie/stance-directed-tweet-generator") return classification_pipe, absa_pipe, tweet_generation_pipe # Set up the title st.title("Towards a Programmable Humanizing AI through Scalable Stance-Directed Architecture Dashboard") # Container for ideology selection spanning across first two columns col11, col12 = st.columns([6, 3]) # Adjust the ratios as needed for better appearance col21, col22, col23 = st.columns([3, 3, 3]) # Adjust the ratios as needed for better appearance with col11: model_selection = st.selectbox( "Select an ideology", options=['Left', 'Right'], index=0 # Default selection ) # Layout for entities and aspects inputs with col21: st.header("Entities") pro_entities = st.text_input("Pro Entities", help="Enter pro entities separated by commas") anti_entities = st.text_input("Anti Entities", help="Enter anti entities separated by commas") neutral_entities = st.text_input("Neutral Entities", help="Enter neutral entities separated by commas") with col22: st.header("Aspects") pro_aspects = st.text_input("Pro Aspects", help="Enter pro aspects separated by commas") anti_aspects = st.text_input("Anti Aspects", help="Enter anti aspects separated by commas") neutral_aspects = st.text_input("Neutral Aspects", help="Enter neutral aspects separated by commas") # Generate button (placed outside the columns so it spans the full width) with col12: generate_button = st.button("Generate tweet and classify toxicity") # Load the model (commented out, assuming model loading is handled elsewhere) classifier, absa, generator = load_model() # Process the input text and generate output if generate_button: with col23: # This block is for displaying outputs in the wider column with st.spinner('Generating the tweet...'): prompt = tweet_generator_prompt.format( ideology=model_selection.lower(), pro_entities=pro_entities, anti_entities=anti_entities, neutral_entities=neutral_entities, pro_aspects=pro_aspects, anti_aspects=anti_aspects, neutral_aspects=neutral_aspects ) generated_tweet = generator(prompt, max_new_tokens=80, do_sample=True, num_return_sequences=3) # Displaying the input and model's output st.write(f"Generated Tweet-1: {generated_tweet[0]['generated_text']}") st.write(f"Generated Tweet-2: {generated_tweet[1]['generated_text']}") st.write(f"Generated Tweet-3: {generated_tweet[2]['generated_text']}") with st.spinner('Generating the Stance-Aware ABSA output...'): absa_output = absa(absa_prompt.format(generated_tweet=generated_tweet[0]['generated_text'])) stances = [x.strip() for x in absa_output[0]['generated_text'].split(',')] stances = [{ 'Aspect': x.split(':')[0], 'Sentiment': x.split(':')[1] } for x in stances] stances_df = pd.DataFrame(stances) stances_df.index = stances_df.index + 1 st.write("Stance-Aware ABSA Output:") st.table(stances_df) with st.spinner('Classifying the toxicity...'): model_output = classifier(generated_tweet[0]['generated_text']) output = model_output[0] st.write("Toxicity Classifier Output:") for i in range(len(output)): if output[i]['label'] == 'LABEL_0': st.write(f"Non-Toxic Content: {output[i]['score'] * 100:.1f}%") elif output[i]['label'] == 'LABEL_2': st.write(f"Toxic Content: {output[i]['score'] * 100:.1f}%") else: continue