File size: 59,949 Bytes
8078d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import warnings
from collections import OrderedDict

import torch

from tqdm import tqdm

from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames


class SAM2VideoPredictor(SAM2Base):
    """The predictor class to handle user interactions and manage inference states."""

    def __init__(

        self,

        fill_hole_area=0,

        # whether to apply non-overlapping constraints on the output object masks

        non_overlap_masks=False,

        # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;

        # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)

        clear_non_cond_mem_around_input=False,

        # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).

        clear_non_cond_mem_for_multi_obj=False,

        # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click

        # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames

        add_all_frames_to_correct_as_cond=False,

        **kwargs,

    ):
        super().__init__(**kwargs)
        self.fill_hole_area = fill_hole_area
        self.non_overlap_masks = non_overlap_masks
        self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
        self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
        self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond

    @torch.inference_mode()
    def init_state(

        self,

        video_path,

        offload_video_to_cpu=False,

        offload_state_to_cpu=False,

        async_loading_frames=False,

    ):
        """Initialize an inference state."""
        compute_device = self.device  # device of the model
        images, video_height, video_width = load_video_frames(
            video_path=video_path,
            image_size=self.image_size,
            offload_video_to_cpu=offload_video_to_cpu,
            async_loading_frames=async_loading_frames,
            compute_device=compute_device,
        )
        inference_state = {}
        inference_state["images"] = images
        inference_state["num_frames"] = len(images)
        # whether to offload the video frames to CPU memory
        # turning on this option saves the GPU memory with only a very small overhead
        inference_state["offload_video_to_cpu"] = offload_video_to_cpu
        # whether to offload the inference state to CPU memory
        # turning on this option saves the GPU memory at the cost of a lower tracking fps
        # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
        # and from 24 to 21 when tracking two objects)
        inference_state["offload_state_to_cpu"] = offload_state_to_cpu
        # the original video height and width, used for resizing final output scores
        inference_state["video_height"] = video_height
        inference_state["video_width"] = video_width
        inference_state["device"] = compute_device
        if offload_state_to_cpu:
            inference_state["storage_device"] = torch.device("cpu")
        else:
            inference_state["storage_device"] = compute_device
        # inputs on each frame
        inference_state["point_inputs_per_obj"] = {}
        inference_state["mask_inputs_per_obj"] = {}
        # visual features on a small number of recently visited frames for quick interactions
        inference_state["cached_features"] = {}
        # values that don't change across frames (so we only need to hold one copy of them)
        inference_state["constants"] = {}
        # mapping between client-side object id and model-side object index
        inference_state["obj_id_to_idx"] = OrderedDict()
        inference_state["obj_idx_to_id"] = OrderedDict()
        inference_state["obj_ids"] = []
        # A storage to hold the model's tracking results and states on each frame
        inference_state["output_dict"] = {
            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
        }
        # Slice (view) of each object tracking results, sharing the same memory with "output_dict"
        inference_state["output_dict_per_obj"] = {}
        # A temporary storage to hold new outputs when user interact with a frame
        # to add clicks or mask (it's merged into "output_dict" before propagation starts)
        inference_state["temp_output_dict_per_obj"] = {}
        # Frames that already holds consolidated outputs from click or mask inputs
        # (we directly use their consolidated outputs during tracking)
        inference_state["consolidated_frame_inds"] = {
            "cond_frame_outputs": set(),  # set containing frame indices
            "non_cond_frame_outputs": set(),  # set containing frame indices
        }
        # metadata for each tracking frame (e.g. which direction it's tracked)
        inference_state["tracking_has_started"] = False
        inference_state["frames_already_tracked"] = {}
        # Warm up the visual backbone and cache the image feature on frame 0
        self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
        return inference_state

    @classmethod
    def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
        """

        Load a pretrained model from the Hugging Face hub.



        Arguments:

          model_id (str): The Hugging Face repository ID.

          **kwargs: Additional arguments to pass to the model constructor.



        Returns:

          (SAM2VideoPredictor): The loaded model.

        """
        from sam2.build_sam import build_sam2_video_predictor_hf

        sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
        return sam_model

    def _obj_id_to_idx(self, inference_state, obj_id):
        """Map client-side object id to model-side object index."""
        obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
        if obj_idx is not None:
            return obj_idx

        # This is a new object id not sent to the server before. We only allow adding
        # new objects *before* the tracking starts.
        allow_new_object = not inference_state["tracking_has_started"]
        if allow_new_object:
            # get the next object slot
            obj_idx = len(inference_state["obj_id_to_idx"])
            inference_state["obj_id_to_idx"][obj_id] = obj_idx
            inference_state["obj_idx_to_id"][obj_idx] = obj_id
            inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
            # set up input and output structures for this object
            inference_state["point_inputs_per_obj"][obj_idx] = {}
            inference_state["mask_inputs_per_obj"][obj_idx] = {}
            inference_state["output_dict_per_obj"][obj_idx] = {
                "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
                "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            }
            inference_state["temp_output_dict_per_obj"][obj_idx] = {
                "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
                "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
            }
            return obj_idx
        else:
            raise RuntimeError(
                f"Cannot add new object id {obj_id} after tracking starts. "
                f"All existing object ids: {inference_state['obj_ids']}. "
                f"Please call 'reset_state' to restart from scratch."
            )

    def _obj_idx_to_id(self, inference_state, obj_idx):
        """Map model-side object index to client-side object id."""
        return inference_state["obj_idx_to_id"][obj_idx]

    def _get_obj_num(self, inference_state):
        """Get the total number of unique object ids received so far in this session."""
        return len(inference_state["obj_idx_to_id"])

    @torch.inference_mode()
    def add_new_points_or_box(

        self,

        inference_state,

        frame_idx,

        obj_id,

        points=None,

        labels=None,

        clear_old_points=True,

        normalize_coords=True,

        box=None,

    ):
        """Add new points to a frame."""
        obj_idx = self._obj_id_to_idx(inference_state, obj_id)
        point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
        mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]

        if (points is not None) != (labels is not None):
            raise ValueError("points and labels must be provided together")
        if points is None and box is None:
            raise ValueError("at least one of points or box must be provided as input")

        if points is None:
            points = torch.zeros(0, 2, dtype=torch.float32)
        elif not isinstance(points, torch.Tensor):
            points = torch.tensor(points, dtype=torch.float32)
        if labels is None:
            labels = torch.zeros(0, dtype=torch.int32)
        elif not isinstance(labels, torch.Tensor):
            labels = torch.tensor(labels, dtype=torch.int32)
        if points.dim() == 2:
            points = points.unsqueeze(0)  # add batch dimension
        if labels.dim() == 1:
            labels = labels.unsqueeze(0)  # add batch dimension

        # If `box` is provided, we add it as the first two points with labels 2 and 3
        # along with the user-provided points (consistent with how SAM 2 is trained).
        if box is not None:
            if not clear_old_points:
                raise ValueError(
                    "cannot add box without clearing old points, since "
                    "box prompt must be provided before any point prompt "
                    "(please use clear_old_points=True instead)"
                )
            if inference_state["tracking_has_started"]:
                warnings.warn(
                    "You are adding a box after tracking starts. SAM 2 may not always be "
                    "able to incorporate a box prompt for *refinement*. If you intend to "
                    "use box prompt as an *initial* input before tracking, please call "
                    "'reset_state' on the inference state to restart from scratch.",
                    category=UserWarning,
                    stacklevel=2,
                )
            if not isinstance(box, torch.Tensor):
                box = torch.tensor(box, dtype=torch.float32, device=points.device)
            box_coords = box.reshape(1, 2, 2)
            box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
            box_labels = box_labels.reshape(1, 2)
            points = torch.cat([box_coords, points], dim=1)
            labels = torch.cat([box_labels, labels], dim=1)

        if normalize_coords:
            video_H = inference_state["video_height"]
            video_W = inference_state["video_width"]
            points = points / torch.tensor([video_W, video_H]).to(points.device)
        # scale the (normalized) coordinates by the model's internal image size
        points = points * self.image_size
        points = points.to(inference_state["device"])
        labels = labels.to(inference_state["device"])

        if not clear_old_points:
            point_inputs = point_inputs_per_frame.get(frame_idx, None)
        else:
            point_inputs = None
        point_inputs = concat_points(point_inputs, points, labels)

        point_inputs_per_frame[frame_idx] = point_inputs
        mask_inputs_per_frame.pop(frame_idx, None)
        # If this frame hasn't been tracked before, we treat it as an initial conditioning
        # frame, meaning that the inputs points are to generate segments on this frame without
        # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
        # the input points will be used to correct the already tracked masks.
        is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
        # whether to track in reverse time order
        if is_init_cond_frame:
            reverse = False
        else:
            reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
        obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
        obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
        # Add a frame to conditioning output if it's an initial conditioning frame or
        # if the model sees all frames receiving clicks/mask as conditioning frames.
        is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"

        # Get any previously predicted mask logits on this object and feed it along with
        # the new clicks into the SAM mask decoder.
        prev_sam_mask_logits = None
        # lookup temporary output dict first, which contains the most recent output
        # (if not found, then lookup conditioning and non-conditioning frame output)
        prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
        if prev_out is None:
            prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
            if prev_out is None:
                prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)

        if prev_out is not None and prev_out["pred_masks"] is not None:
            device = inference_state["device"]
            prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
            # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
            prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
        current_out, _ = self._run_single_frame_inference(
            inference_state=inference_state,
            output_dict=obj_output_dict,  # run on the slice of a single object
            frame_idx=frame_idx,
            batch_size=1,  # run on the slice of a single object
            is_init_cond_frame=is_init_cond_frame,
            point_inputs=point_inputs,
            mask_inputs=None,
            reverse=reverse,
            # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
            # at the beginning of `propagate_in_video` (after user finalize their clicks). This
            # allows us to enforce non-overlapping constraints on all objects before encoding
            # them into memory.
            run_mem_encoder=False,
            prev_sam_mask_logits=prev_sam_mask_logits,
        )
        # Add the output to the output dict (to be used as future memory)
        obj_temp_output_dict[storage_key][frame_idx] = current_out

        # Resize the output mask to the original video resolution
        obj_ids = inference_state["obj_ids"]
        consolidated_out = self._consolidate_temp_output_across_obj(
            inference_state,
            frame_idx,
            is_cond=is_cond,
            run_mem_encoder=False,
            consolidate_at_video_res=True,
        )
        _, video_res_masks = self._get_orig_video_res_output(
            inference_state, consolidated_out["pred_masks_video_res"]
        )
        return frame_idx, obj_ids, video_res_masks

    def add_new_points(self, *args, **kwargs):
        """Deprecated method. Please use `add_new_points_or_box` instead."""
        return self.add_new_points_or_box(*args, **kwargs)

    @torch.inference_mode()
    def add_new_mask(

        self,

        inference_state,

        frame_idx,

        obj_id,

        mask,

    ):
        """Add new mask to a frame."""
        obj_idx = self._obj_id_to_idx(inference_state, obj_id)
        point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
        mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]

        if not isinstance(mask, torch.Tensor):
            mask = torch.tensor(mask, dtype=torch.bool)
        assert mask.dim() == 2
        mask_H, mask_W = mask.shape
        mask_inputs_orig = mask[None, None]  # add batch and channel dimension
        mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])

        # resize the mask if it doesn't match the model's image size
        if mask_H != self.image_size or mask_W != self.image_size:
            mask_inputs = torch.nn.functional.interpolate(
                mask_inputs_orig,
                size=(self.image_size, self.image_size),
                align_corners=False,
                mode="bilinear",
                antialias=True,  # use antialias for downsampling
            )
            mask_inputs = (mask_inputs >= 0.5).float()
        else:
            mask_inputs = mask_inputs_orig

        mask_inputs_per_frame[frame_idx] = mask_inputs
        point_inputs_per_frame.pop(frame_idx, None)
        # If this frame hasn't been tracked before, we treat it as an initial conditioning
        # frame, meaning that the inputs points are to generate segments on this frame without
        # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
        # the input points will be used to correct the already tracked masks.
        is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
        # whether to track in reverse time order
        if is_init_cond_frame:
            reverse = False
        else:
            reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
        obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
        obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
        # Add a frame to conditioning output if it's an initial conditioning frame or
        # if the model sees all frames receiving clicks/mask as conditioning frames.
        is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"

        current_out, _ = self._run_single_frame_inference(
            inference_state=inference_state,
            output_dict=obj_output_dict,  # run on the slice of a single object
            frame_idx=frame_idx,
            batch_size=1,  # run on the slice of a single object
            is_init_cond_frame=is_init_cond_frame,
            point_inputs=None,
            mask_inputs=mask_inputs,
            reverse=reverse,
            # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
            # at the beginning of `propagate_in_video` (after user finalize their clicks). This
            # allows us to enforce non-overlapping constraints on all objects before encoding
            # them into memory.
            run_mem_encoder=False,
        )
        # Add the output to the output dict (to be used as future memory)
        obj_temp_output_dict[storage_key][frame_idx] = current_out

        # Resize the output mask to the original video resolution
        obj_ids = inference_state["obj_ids"]
        consolidated_out = self._consolidate_temp_output_across_obj(
            inference_state,
            frame_idx,
            is_cond=is_cond,
            run_mem_encoder=False,
            consolidate_at_video_res=True,
        )
        _, video_res_masks = self._get_orig_video_res_output(
            inference_state, consolidated_out["pred_masks_video_res"]
        )
        return frame_idx, obj_ids, video_res_masks

    def _get_orig_video_res_output(self, inference_state, any_res_masks):
        """

        Resize the object scores to the original video resolution (video_res_masks)

        and apply non-overlapping constraints for final output.

        """
        device = inference_state["device"]
        video_H = inference_state["video_height"]
        video_W = inference_state["video_width"]
        any_res_masks = any_res_masks.to(device, non_blocking=True)
        if any_res_masks.shape[-2:] == (video_H, video_W):
            video_res_masks = any_res_masks
        else:
            video_res_masks = torch.nn.functional.interpolate(
                any_res_masks,
                size=(video_H, video_W),
                mode="bilinear",
                align_corners=False,
            )
        if self.non_overlap_masks:
            video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
        return any_res_masks, video_res_masks

    def _consolidate_temp_output_across_obj(

        self,

        inference_state,

        frame_idx,

        is_cond,

        run_mem_encoder,

        consolidate_at_video_res=False,

    ):
        """

        Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on

        a frame into a single output for all objects, including

        1) fill any missing objects either from `output_dict_per_obj` (if they exist in

           `output_dict_per_obj` for this frame) or leave them as placeholder values

           (if they don't exist in `output_dict_per_obj` for this frame);

        2) if specified, rerun memory encoder after apply non-overlapping constraints

           on the object scores.

        """
        batch_size = self._get_obj_num(inference_state)
        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
        # Optionally, we allow consolidating the temporary outputs at the original
        # video resolution (to provide a better editing experience for mask prompts).
        if consolidate_at_video_res:
            assert not run_mem_encoder, "memory encoder cannot run at video resolution"
            consolidated_H = inference_state["video_height"]
            consolidated_W = inference_state["video_width"]
            consolidated_mask_key = "pred_masks_video_res"
        else:
            consolidated_H = consolidated_W = self.image_size // 4
            consolidated_mask_key = "pred_masks"

        # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
        # will be added when rerunning the memory encoder after applying non-overlapping
        # constraints to object scores. Its "pred_masks" are prefilled with a large
        # negative value (NO_OBJ_SCORE) to represent missing objects.
        consolidated_out = {
            "maskmem_features": None,
            "maskmem_pos_enc": None,
            consolidated_mask_key: torch.full(
                size=(batch_size, 1, consolidated_H, consolidated_W),
                fill_value=NO_OBJ_SCORE,
                dtype=torch.float32,
                device=inference_state["storage_device"],
            ),
            "obj_ptr": torch.full(
                size=(batch_size, self.hidden_dim),
                fill_value=NO_OBJ_SCORE,
                dtype=torch.float32,
                device=inference_state["device"],
            ),
            "object_score_logits": torch.full(
                size=(batch_size, 1),
                # default to 10.0 for object_score_logits, i.e. assuming the object is
                # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
                fill_value=10.0,
                dtype=torch.float32,
                device=inference_state["device"],
            ),
        }
        empty_mask_ptr = None
        for obj_idx in range(batch_size):
            obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
            obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
            out = obj_temp_output_dict[storage_key].get(frame_idx, None)
            # If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
            # we fall back and look up its previous output in "output_dict_per_obj".
            # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
            # "output_dict_per_obj" to find a previous output for this object.
            if out is None:
                out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
            if out is None:
                out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
            # If the object doesn't appear in "output_dict_per_obj" either, we skip it
            # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
            # placeholder above) and set its object pointer to be a dummy pointer.
            if out is None:
                # Fill in dummy object pointers for those objects without any inputs or
                # tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
                # i.e. when we need to build the memory for tracking).
                if run_mem_encoder:
                    if empty_mask_ptr is None:
                        empty_mask_ptr = self._get_empty_mask_ptr(
                            inference_state, frame_idx
                        )
                    # fill object pointer with a dummy pointer (based on an empty mask)
                    consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
                continue
            # Add the temporary object output mask to consolidated output mask
            obj_mask = out["pred_masks"]
            consolidated_pred_masks = consolidated_out[consolidated_mask_key]
            if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
                consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
            else:
                # Resize first if temporary object mask has a different resolution
                resized_obj_mask = torch.nn.functional.interpolate(
                    obj_mask,
                    size=consolidated_pred_masks.shape[-2:],
                    mode="bilinear",
                    align_corners=False,
                )
                consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
            consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
            consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out[
                "object_score_logits"
            ]

        # Optionally, apply non-overlapping constraints on the consolidated scores
        # and rerun the memory encoder
        if run_mem_encoder:
            device = inference_state["device"]
            high_res_masks = torch.nn.functional.interpolate(
                consolidated_out["pred_masks"].to(device, non_blocking=True),
                size=(self.image_size, self.image_size),
                mode="bilinear",
                align_corners=False,
            )
            if self.non_overlap_masks_for_mem_enc:
                high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
            maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
                inference_state=inference_state,
                frame_idx=frame_idx,
                batch_size=batch_size,
                high_res_masks=high_res_masks,
                object_score_logits=consolidated_out["object_score_logits"],
                is_mask_from_pts=True,  # these frames are what the user interacted with
            )
            consolidated_out["maskmem_features"] = maskmem_features
            consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc

        return consolidated_out

    def _get_empty_mask_ptr(self, inference_state, frame_idx):
        """Get a dummy object pointer based on an empty mask on the current frame."""
        # A dummy (empty) mask with a single object
        batch_size = 1
        mask_inputs = torch.zeros(
            (batch_size, 1, self.image_size, self.image_size),
            dtype=torch.float32,
            device=inference_state["device"],
        )

        # Retrieve correct image features
        (
            _,
            _,
            current_vision_feats,
            current_vision_pos_embeds,
            feat_sizes,
        ) = self._get_image_feature(inference_state, frame_idx, batch_size)

        # Feed the empty mask and image feature above to get a dummy object pointer
        current_out = self.track_step(
            frame_idx=frame_idx,
            is_init_cond_frame=True,
            current_vision_feats=current_vision_feats,
            current_vision_pos_embeds=current_vision_pos_embeds,
            feat_sizes=feat_sizes,
            point_inputs=None,
            mask_inputs=mask_inputs,
            output_dict={},
            num_frames=inference_state["num_frames"],
            track_in_reverse=False,
            run_mem_encoder=False,
            prev_sam_mask_logits=None,
        )
        return current_out["obj_ptr"]

    @torch.inference_mode()
    def propagate_in_video_preflight(self, inference_state):
        """Prepare inference_state and consolidate temporary outputs before tracking."""
        # Tracking has started and we don't allow adding new objects until session is reset.
        inference_state["tracking_has_started"] = True
        batch_size = self._get_obj_num(inference_state)

        # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
        # add them into "output_dict".
        temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
        output_dict = inference_state["output_dict"]
        # "consolidated_frame_inds" contains indices of those frames where consolidated
        # temporary outputs have been added (either in this call or any previous calls
        # to `propagate_in_video_preflight`).
        consolidated_frame_inds = inference_state["consolidated_frame_inds"]
        for is_cond in [False, True]:
            # Separately consolidate conditioning and non-conditioning temp outputs
            storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
            # Find all the frames that contain temporary outputs for any objects
            # (these should be the frames that have just received clicks for mask inputs
            # via `add_new_points_or_box` or `add_new_mask`)
            temp_frame_inds = set()
            for obj_temp_output_dict in temp_output_dict_per_obj.values():
                temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
            consolidated_frame_inds[storage_key].update(temp_frame_inds)
            # consolidate the temporary output across all objects on this frame
            for frame_idx in temp_frame_inds:
                consolidated_out = self._consolidate_temp_output_across_obj(
                    inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
                )
                # merge them into "output_dict" and also create per-object slices
                output_dict[storage_key][frame_idx] = consolidated_out
                self._add_output_per_object(
                    inference_state, frame_idx, consolidated_out, storage_key
                )
                clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
                    self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
                )
                if clear_non_cond_mem:
                    # clear non-conditioning memory of the surrounding frames
                    self._clear_non_cond_mem_around_input(inference_state, frame_idx)

            # clear temporary outputs in `temp_output_dict_per_obj`
            for obj_temp_output_dict in temp_output_dict_per_obj.values():
                obj_temp_output_dict[storage_key].clear()

        # edge case: if an output is added to "cond_frame_outputs", we remove any prior
        # output on the same frame in "non_cond_frame_outputs"
        for frame_idx in output_dict["cond_frame_outputs"]:
            output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
        for obj_output_dict in inference_state["output_dict_per_obj"].values():
            for frame_idx in obj_output_dict["cond_frame_outputs"]:
                obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
        for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
            assert frame_idx in output_dict["cond_frame_outputs"]
            consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)

        # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
        # with either points or mask inputs (which should be true under a correct workflow).
        all_consolidated_frame_inds = (
            consolidated_frame_inds["cond_frame_outputs"]
            | consolidated_frame_inds["non_cond_frame_outputs"]
        )
        input_frames_inds = set()
        for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
            input_frames_inds.update(point_inputs_per_frame.keys())
        for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
            input_frames_inds.update(mask_inputs_per_frame.keys())
        assert all_consolidated_frame_inds == input_frames_inds

    @torch.inference_mode()
    def propagate_in_video(

        self,

        inference_state,

        start_frame_idx=None,

        max_frame_num_to_track=None,

        reverse=False,

    ):
        """Propagate the input points across frames to track in the entire video."""
        self.propagate_in_video_preflight(inference_state)

        output_dict = inference_state["output_dict"]
        consolidated_frame_inds = inference_state["consolidated_frame_inds"]
        obj_ids = inference_state["obj_ids"]
        num_frames = inference_state["num_frames"]
        batch_size = self._get_obj_num(inference_state)
        if len(output_dict["cond_frame_outputs"]) == 0:
            raise RuntimeError("No points are provided; please add points first")
        clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
            self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
        )

        # set start index, end index, and processing order
        if start_frame_idx is None:
            # default: start from the earliest frame with input points
            start_frame_idx = min(output_dict["cond_frame_outputs"])
        if max_frame_num_to_track is None:
            # default: track all the frames in the video
            max_frame_num_to_track = num_frames
        if reverse:
            end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
            if start_frame_idx > 0:
                processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
            else:
                processing_order = []  # skip reverse tracking if starting from frame 0
        else:
            end_frame_idx = min(
                start_frame_idx + max_frame_num_to_track, num_frames - 1
            )
            processing_order = range(start_frame_idx, end_frame_idx + 1)

        for frame_idx in tqdm(processing_order, desc="propagate in video"):
            # We skip those frames already in consolidated outputs (these are frames
            # that received input clicks or mask). Note that we cannot directly run
            # batched forward on them via `_run_single_frame_inference` because the
            # number of clicks on each object might be different.
            if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
                storage_key = "cond_frame_outputs"
                current_out = output_dict[storage_key][frame_idx]
                pred_masks = current_out["pred_masks"]
                if clear_non_cond_mem:
                    # clear non-conditioning memory of the surrounding frames
                    self._clear_non_cond_mem_around_input(inference_state, frame_idx)
            elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
                storage_key = "non_cond_frame_outputs"
                current_out = output_dict[storage_key][frame_idx]
                pred_masks = current_out["pred_masks"]
            else:
                storage_key = "non_cond_frame_outputs"
                current_out, pred_masks = self._run_single_frame_inference(
                    inference_state=inference_state,
                    output_dict=output_dict,
                    frame_idx=frame_idx,
                    batch_size=batch_size,
                    is_init_cond_frame=False,
                    point_inputs=None,
                    mask_inputs=None,
                    reverse=reverse,
                    run_mem_encoder=True,
                )
                output_dict[storage_key][frame_idx] = current_out
            # Create slices of per-object outputs for subsequent interaction with each
            # individual object after tracking.
            self._add_output_per_object(
                inference_state, frame_idx, current_out, storage_key
            )
            inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}

            # Resize the output mask to the original video resolution (we directly use
            # the mask scores on GPU for output to avoid any CPU conversion in between)
            _, video_res_masks = self._get_orig_video_res_output(
                inference_state, pred_masks
            )
            yield frame_idx, obj_ids, video_res_masks

    def _add_output_per_object(

        self, inference_state, frame_idx, current_out, storage_key

    ):
        """

        Split a multi-object output into per-object output slices and add them into

        `output_dict_per_obj`. The resulting slices share the same tensor storage.

        """
        maskmem_features = current_out["maskmem_features"]
        assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)

        maskmem_pos_enc = current_out["maskmem_pos_enc"]
        assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)

        output_dict_per_obj = inference_state["output_dict_per_obj"]
        for obj_idx, obj_output_dict in output_dict_per_obj.items():
            obj_slice = slice(obj_idx, obj_idx + 1)
            obj_out = {
                "maskmem_features": None,
                "maskmem_pos_enc": None,
                "pred_masks": current_out["pred_masks"][obj_slice],
                "obj_ptr": current_out["obj_ptr"][obj_slice],
                "object_score_logits": current_out["object_score_logits"][obj_slice],
            }
            if maskmem_features is not None:
                obj_out["maskmem_features"] = maskmem_features[obj_slice]
            if maskmem_pos_enc is not None:
                obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
            obj_output_dict[storage_key][frame_idx] = obj_out

    @torch.inference_mode()
    def clear_all_prompts_in_frame(

        self, inference_state, frame_idx, obj_id, need_output=True

    ):
        """Remove all input points or mask in a specific frame for a given object."""
        obj_idx = self._obj_id_to_idx(inference_state, obj_id)

        # Clear the conditioning information on the given frame
        inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
        inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)

        temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
        temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
        temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)

        # Check and see if there are still any inputs left on this frame
        batch_size = self._get_obj_num(inference_state)
        frame_has_input = False
        for obj_idx2 in range(batch_size):
            if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]:
                frame_has_input = True
                break
            if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]:
                frame_has_input = True
                break

        # If this frame has no remaining inputs for any objects, we further clear its
        # conditioning frame status
        if not frame_has_input:
            output_dict = inference_state["output_dict"]
            consolidated_frame_inds = inference_state["consolidated_frame_inds"]
            consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx)
            consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
            # Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
            out = output_dict["cond_frame_outputs"].pop(frame_idx, None)
            if out is not None:
                # The frame is not a conditioning frame anymore since it's not receiving inputs,
                # so we "downgrade" its output (if exists) to a non-conditioning frame output.
                output_dict["non_cond_frame_outputs"][frame_idx] = out
                inference_state["frames_already_tracked"].pop(frame_idx, None)
            # Similarly, do it for the sliced output on each object.
            for obj_idx2 in range(batch_size):
                obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2]
                obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
                if obj_out is not None:
                    obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out

            # If all the conditioning frames have been removed, we also clear the tracking outputs
            if len(output_dict["cond_frame_outputs"]) == 0:
                self._reset_tracking_results(inference_state)

        if not need_output:
            return
        # Finally, output updated masks per object (after removing the inputs above)
        obj_ids = inference_state["obj_ids"]
        is_cond = any(
            frame_idx in obj_temp_output_dict["cond_frame_outputs"]
            for obj_temp_output_dict in temp_output_dict_per_obj.values()
        )
        consolidated_out = self._consolidate_temp_output_across_obj(
            inference_state,
            frame_idx,
            is_cond=is_cond,
            run_mem_encoder=False,
            consolidate_at_video_res=True,
        )
        _, video_res_masks = self._get_orig_video_res_output(
            inference_state, consolidated_out["pred_masks_video_res"]
        )
        return frame_idx, obj_ids, video_res_masks

    @torch.inference_mode()
    def reset_state(self, inference_state):
        """Remove all input points or mask in all frames throughout the video."""
        self._reset_tracking_results(inference_state)
        # Remove all object ids
        inference_state["obj_id_to_idx"].clear()
        inference_state["obj_idx_to_id"].clear()
        inference_state["obj_ids"].clear()
        inference_state["point_inputs_per_obj"].clear()
        inference_state["mask_inputs_per_obj"].clear()
        inference_state["output_dict_per_obj"].clear()
        inference_state["temp_output_dict_per_obj"].clear()

    def _reset_tracking_results(self, inference_state):
        """Reset all tracking inputs and results across the videos."""
        for v in inference_state["point_inputs_per_obj"].values():
            v.clear()
        for v in inference_state["mask_inputs_per_obj"].values():
            v.clear()
        for v in inference_state["output_dict_per_obj"].values():
            v["cond_frame_outputs"].clear()
            v["non_cond_frame_outputs"].clear()
        for v in inference_state["temp_output_dict_per_obj"].values():
            v["cond_frame_outputs"].clear()
            v["non_cond_frame_outputs"].clear()
        inference_state["output_dict"]["cond_frame_outputs"].clear()
        inference_state["output_dict"]["non_cond_frame_outputs"].clear()
        inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
        inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
        inference_state["tracking_has_started"] = False
        inference_state["frames_already_tracked"].clear()

    def _get_image_feature(self, inference_state, frame_idx, batch_size):
        """Compute the image features on a given frame."""
        # Look up in the cache first
        image, backbone_out = inference_state["cached_features"].get(
            frame_idx, (None, None)
        )
        if backbone_out is None:
            # Cache miss -- we will run inference on a single image
            device = inference_state["device"]
            image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
            backbone_out = self.forward_image(image)
            # Cache the most recent frame's feature (for repeated interactions with
            # a frame; we can use an LRU cache for more frames in the future).
            inference_state["cached_features"] = {frame_idx: (image, backbone_out)}

        # expand the features to have the same dimension as the number of objects
        expanded_image = image.expand(batch_size, -1, -1, -1)
        expanded_backbone_out = {
            "backbone_fpn": backbone_out["backbone_fpn"].copy(),
            "vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
        }
        for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
            expanded_backbone_out["backbone_fpn"][i] = feat.expand(
                batch_size, -1, -1, -1
            )
        for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
            pos = pos.expand(batch_size, -1, -1, -1)
            expanded_backbone_out["vision_pos_enc"][i] = pos

        features = self._prepare_backbone_features(expanded_backbone_out)
        features = (expanded_image,) + features
        return features

    def _run_single_frame_inference(

        self,

        inference_state,

        output_dict,

        frame_idx,

        batch_size,

        is_init_cond_frame,

        point_inputs,

        mask_inputs,

        reverse,

        run_mem_encoder,

        prev_sam_mask_logits=None,

    ):
        """Run tracking on a single frame based on current inputs and previous memory."""
        # Retrieve correct image features
        (
            _,
            _,
            current_vision_feats,
            current_vision_pos_embeds,
            feat_sizes,
        ) = self._get_image_feature(inference_state, frame_idx, batch_size)

        # point and mask should not appear as input simultaneously on the same frame
        assert point_inputs is None or mask_inputs is None
        current_out = self.track_step(
            frame_idx=frame_idx,
            is_init_cond_frame=is_init_cond_frame,
            current_vision_feats=current_vision_feats,
            current_vision_pos_embeds=current_vision_pos_embeds,
            feat_sizes=feat_sizes,
            point_inputs=point_inputs,
            mask_inputs=mask_inputs,
            output_dict=output_dict,
            num_frames=inference_state["num_frames"],
            track_in_reverse=reverse,
            run_mem_encoder=run_mem_encoder,
            prev_sam_mask_logits=prev_sam_mask_logits,
        )

        # optionally offload the output to CPU memory to save GPU space
        storage_device = inference_state["storage_device"]
        maskmem_features = current_out["maskmem_features"]
        if maskmem_features is not None:
            maskmem_features = maskmem_features.to(torch.bfloat16)
            maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
        pred_masks_gpu = current_out["pred_masks"]
        # potentially fill holes in the predicted masks
        if self.fill_hole_area > 0:
            pred_masks_gpu = fill_holes_in_mask_scores(
                pred_masks_gpu, self.fill_hole_area
            )
        pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
        # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
        maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
        # object pointer is a small tensor, so we always keep it on GPU memory for fast access
        obj_ptr = current_out["obj_ptr"]
        object_score_logits = current_out["object_score_logits"]
        # make a compact version of this frame's output to reduce the state size
        compact_current_out = {
            "maskmem_features": maskmem_features,
            "maskmem_pos_enc": maskmem_pos_enc,
            "pred_masks": pred_masks,
            "obj_ptr": obj_ptr,
            "object_score_logits": object_score_logits,
        }
        return compact_current_out, pred_masks_gpu

    def _run_memory_encoder(

        self,

        inference_state,

        frame_idx,

        batch_size,

        high_res_masks,

        object_score_logits,

        is_mask_from_pts,

    ):
        """

        Run the memory encoder on `high_res_masks`. This is usually after applying

        non-overlapping constraints to object scores. Since their scores changed, their

        memory also need to be computed again with the memory encoder.

        """
        # Retrieve correct image features
        _, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
            inference_state, frame_idx, batch_size
        )
        maskmem_features, maskmem_pos_enc = self._encode_new_memory(
            current_vision_feats=current_vision_feats,
            feat_sizes=feat_sizes,
            pred_masks_high_res=high_res_masks,
            object_score_logits=object_score_logits,
            is_mask_from_pts=is_mask_from_pts,
        )

        # optionally offload the output to CPU memory to save GPU space
        storage_device = inference_state["storage_device"]
        maskmem_features = maskmem_features.to(torch.bfloat16)
        maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
        # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
        maskmem_pos_enc = self._get_maskmem_pos_enc(
            inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
        )
        return maskmem_features, maskmem_pos_enc

    def _get_maskmem_pos_enc(self, inference_state, current_out):
        """

        `maskmem_pos_enc` is the same across frames and objects, so we cache it as

        a constant in the inference session to reduce session storage size.

        """
        model_constants = inference_state["constants"]
        # "out_maskmem_pos_enc" should be either a list of tensors or None
        out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
        if out_maskmem_pos_enc is not None:
            if "maskmem_pos_enc" not in model_constants:
                assert isinstance(out_maskmem_pos_enc, list)
                # only take the slice for one object, since it's same across objects
                maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
                model_constants["maskmem_pos_enc"] = maskmem_pos_enc
            else:
                maskmem_pos_enc = model_constants["maskmem_pos_enc"]
            # expand the cached maskmem_pos_enc to the actual batch size
            batch_size = out_maskmem_pos_enc[0].size(0)
            expanded_maskmem_pos_enc = [
                x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
            ]
        else:
            expanded_maskmem_pos_enc = None
        return expanded_maskmem_pos_enc

    @torch.inference_mode()
    def remove_object(self, inference_state, obj_id, strict=False, need_output=True):
        """

        Remove an object id from the tracking state. If strict is True, we check whether

        the object id actually exists and raise an error if it doesn't exist.

        """
        old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
        updated_frames = []
        # Check whether this object_id to remove actually exists and possibly raise an error.
        if old_obj_idx_to_rm is None:
            if not strict:
                return inference_state["obj_ids"], updated_frames
            raise RuntimeError(
                f"Cannot remove object id {obj_id} as it doesn't exist. "
                f"All existing object ids: {inference_state['obj_ids']}."
            )

        # If this is the only remaining object id, we simply reset the state.
        if len(inference_state["obj_id_to_idx"]) == 1:
            self.reset_state(inference_state)
            return inference_state["obj_ids"], updated_frames

        # There are still remaining objects after removing this object id. In this case,
        # we need to delete the object storage from inference state tensors.
        # Step 0: clear the input on those frames where this object id has point or mask input
        # (note that this step is required as it might downgrade conditioning frames to
        # non-conditioning ones)
        obj_input_frames_inds = set()
        obj_input_frames_inds.update(
            inference_state["point_inputs_per_obj"][old_obj_idx_to_rm]
        )
        obj_input_frames_inds.update(
            inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm]
        )
        for frame_idx in obj_input_frames_inds:
            self.clear_all_prompts_in_frame(
                inference_state, frame_idx, obj_id, need_output=False
            )

        # Step 1: Update the object id mapping (note that it must be done after Step 0,
        # since Step 0 still requires the old object id mappings in inference_state)
        old_obj_ids = inference_state["obj_ids"]
        old_obj_inds = list(range(len(old_obj_ids)))
        remain_old_obj_inds = old_obj_inds.copy()
        remain_old_obj_inds.remove(old_obj_idx_to_rm)
        new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
        new_obj_inds = list(range(len(new_obj_ids)))
        # build new mappings
        old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
        inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
        inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
        inference_state["obj_ids"] = new_obj_ids

        # Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
        # (note that "consolidated_frame_inds" doesn't need to be updated in this step as
        # it's already handled in Step 0)
        def _map_keys(container):
            new_kvs = []
            for k in old_obj_inds:
                v = container.pop(k)
                if k in old_idx_to_new_idx:
                    new_kvs.append((old_idx_to_new_idx[k], v))
            container.update(new_kvs)

        _map_keys(inference_state["point_inputs_per_obj"])
        _map_keys(inference_state["mask_inputs_per_obj"])
        _map_keys(inference_state["output_dict_per_obj"])
        _map_keys(inference_state["temp_output_dict_per_obj"])

        # Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices.
        def _slice_state(output_dict, storage_key):
            for frame_idx, out in output_dict[storage_key].items():
                out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds]
                out["maskmem_pos_enc"] = [
                    x[remain_old_obj_inds] for x in out["maskmem_pos_enc"]
                ]
                # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
                out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(inference_state, out)
                out["pred_masks"] = out["pred_masks"][remain_old_obj_inds]
                out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds]
                out["object_score_logits"] = out["object_score_logits"][
                    remain_old_obj_inds
                ]
                # also update the per-object slices
                self._add_output_per_object(
                    inference_state, frame_idx, out, storage_key
                )

        _slice_state(inference_state["output_dict"], "cond_frame_outputs")
        _slice_state(inference_state["output_dict"], "non_cond_frame_outputs")

        # Step 4: Further collect the outputs on those frames in `obj_input_frames_inds`, which
        # could show an updated mask for objects previously occluded by the object being removed
        if need_output:
            temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
            for frame_idx in obj_input_frames_inds:
                is_cond = any(
                    frame_idx in obj_temp_output_dict["cond_frame_outputs"]
                    for obj_temp_output_dict in temp_output_dict_per_obj.values()
                )
                consolidated_out = self._consolidate_temp_output_across_obj(
                    inference_state,
                    frame_idx,
                    is_cond=is_cond,
                    run_mem_encoder=False,
                    consolidate_at_video_res=True,
                )
                _, video_res_masks = self._get_orig_video_res_output(
                    inference_state, consolidated_out["pred_masks_video_res"]
                )
                updated_frames.append((frame_idx, video_res_masks))

        return inference_state["obj_ids"], updated_frames

    def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
        """

        Remove the non-conditioning memory around the input frame. When users provide

        correction clicks, the surrounding frames' non-conditioning memories can still

        contain outdated object appearance information and could confuse the model.



        This method clears those non-conditioning memories surrounding the interacted

        frame to avoid giving the model both old and new information about the object.

        """
        r = self.memory_temporal_stride_for_eval
        frame_idx_begin = frame_idx - r * self.num_maskmem
        frame_idx_end = frame_idx + r * self.num_maskmem
        output_dict = inference_state["output_dict"]
        non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
        for t in range(frame_idx_begin, frame_idx_end + 1):
            non_cond_frame_outputs.pop(t, None)
            for obj_output_dict in inference_state["output_dict_per_obj"].values():
                obj_output_dict["non_cond_frame_outputs"].pop(t, None)