|
|
|
|
|
|
|
|
|
|
|
|
|
import logging
|
|
import os
|
|
|
|
import torch
|
|
from hydra import compose
|
|
from hydra.utils import instantiate
|
|
from omegaconf import OmegaConf
|
|
|
|
import sam2
|
|
|
|
|
|
|
|
|
|
if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
|
|
|
|
|
|
|
|
|
|
raise RuntimeError(
|
|
"You're likely running Python from the parent directory of the sam2 repository "
|
|
"(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
|
|
"This is not supported since the `sam2` Python package could be shadowed by the "
|
|
"repository name (the repository is also named `sam2` and contains the Python package "
|
|
"in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
|
|
"rather than its parent dir, or from your home directory) after installing SAM 2."
|
|
)
|
|
|
|
|
|
HF_MODEL_ID_TO_FILENAMES = {
|
|
"facebook/sam2-hiera-tiny": (
|
|
"configs/sam2/sam2_hiera_t.yaml",
|
|
"sam2_hiera_tiny.pt",
|
|
),
|
|
"facebook/sam2-hiera-small": (
|
|
"configs/sam2/sam2_hiera_s.yaml",
|
|
"sam2_hiera_small.pt",
|
|
),
|
|
"facebook/sam2-hiera-base-plus": (
|
|
"configs/sam2/sam2_hiera_b+.yaml",
|
|
"sam2_hiera_base_plus.pt",
|
|
),
|
|
"facebook/sam2-hiera-large": (
|
|
"configs/sam2/sam2_hiera_l.yaml",
|
|
"sam2_hiera_large.pt",
|
|
),
|
|
"facebook/sam2.1-hiera-tiny": (
|
|
"configs/sam2.1/sam2.1_hiera_t.yaml",
|
|
"sam2.1_hiera_tiny.pt",
|
|
),
|
|
"facebook/sam2.1-hiera-small": (
|
|
"configs/sam2.1/sam2.1_hiera_s.yaml",
|
|
"sam2.1_hiera_small.pt",
|
|
),
|
|
"facebook/sam2.1-hiera-base-plus": (
|
|
"configs/sam2.1/sam2.1_hiera_b+.yaml",
|
|
"sam2.1_hiera_base_plus.pt",
|
|
),
|
|
"facebook/sam2.1-hiera-large": (
|
|
"configs/sam2.1/sam2.1_hiera_l.yaml",
|
|
"sam2.1_hiera_large.pt",
|
|
),
|
|
}
|
|
|
|
|
|
def build_sam2(
|
|
config_file,
|
|
ckpt_path=None,
|
|
device="cuda",
|
|
mode="eval",
|
|
hydra_overrides_extra=[],
|
|
apply_postprocessing=True,
|
|
**kwargs,
|
|
):
|
|
|
|
if apply_postprocessing:
|
|
hydra_overrides_extra = hydra_overrides_extra.copy()
|
|
hydra_overrides_extra += [
|
|
|
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
|
]
|
|
|
|
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
|
|
OmegaConf.resolve(cfg)
|
|
model = instantiate(cfg.model, _recursive_=True)
|
|
_load_checkpoint(model, ckpt_path)
|
|
model = model.to(device)
|
|
if mode == "eval":
|
|
model.eval()
|
|
return model
|
|
|
|
|
|
def build_sam2_video_predictor(
|
|
config_file,
|
|
ckpt_path=None,
|
|
device="cuda",
|
|
mode="eval",
|
|
hydra_overrides_extra=[],
|
|
apply_postprocessing=True,
|
|
**kwargs,
|
|
):
|
|
hydra_overrides = [
|
|
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
|
|
]
|
|
if apply_postprocessing:
|
|
hydra_overrides_extra = hydra_overrides_extra.copy()
|
|
hydra_overrides_extra += [
|
|
|
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
|
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
|
|
|
"++model.binarize_mask_from_pts_for_mem_enc=true",
|
|
|
|
"++model.fill_hole_area=8",
|
|
]
|
|
hydra_overrides.extend(hydra_overrides_extra)
|
|
|
|
|
|
cfg = compose(config_name=config_file, overrides=hydra_overrides)
|
|
OmegaConf.resolve(cfg)
|
|
model = instantiate(cfg.model, _recursive_=True)
|
|
_load_checkpoint(model, ckpt_path)
|
|
model = model.to(device)
|
|
if mode == "eval":
|
|
model.eval()
|
|
return model
|
|
|
|
|
|
def _hf_download(model_id):
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
|
|
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
|
|
return config_name, ckpt_path
|
|
|
|
|
|
def build_sam2_hf(model_id, **kwargs):
|
|
config_name, ckpt_path = _hf_download(model_id)
|
|
return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
|
|
|
|
|
|
def build_sam2_video_predictor_hf(model_id, **kwargs):
|
|
config_name, ckpt_path = _hf_download(model_id)
|
|
return build_sam2_video_predictor(
|
|
config_file=config_name, ckpt_path=ckpt_path, **kwargs
|
|
)
|
|
|
|
|
|
def _load_checkpoint(model, ckpt_path):
|
|
if ckpt_path is not None:
|
|
sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
|
|
missing_keys, unexpected_keys = model.load_state_dict(sd)
|
|
if missing_keys:
|
|
logging.error(missing_keys)
|
|
raise RuntimeError()
|
|
if unexpected_keys:
|
|
logging.error(unexpected_keys)
|
|
raise RuntimeError()
|
|
logging.info("Loaded checkpoint sucessfully")
|
|
|