import numpy as np from PIL import Image import cv2 import os import shutil def blend_mask_with_image(image, mask, color): """Blend the mask with the original image using a transparent color overlay.""" mask_rgb = np.stack([mask * color[i] for i in range(3)], axis=-1) blended = (0.7 * image + 0.3 * mask_rgb).astype(np.uint8) return blended def save_mask_as_png(mask, path): """Save the binary mask as a PNG.""" mask_image = Image.fromarray((mask * 255).astype(np.uint8)) mask_image.save(path) def convert_mask_to_yolo(mask_path, image_path, class_id, output_path, append=False): """ Convert a binary mask to YOLO-compatible segmentation labels. Args: mask_path (str): Path to the binary mask image. image_path (str): Path to the corresponding image. class_id (int): Class ID (e.g., 0 for void, 1 for chip). output_path (str): Path to save the YOLO label (.txt) file. append (bool): Whether to append labels to the file. Returns: None """ try: # Load the binary mask mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) if mask is None: raise ValueError(f"Mask not found or invalid: {mask_path}") # Load the corresponding image to get dimensions image = cv2.imread(image_path) if image is None: raise ValueError(f"Image not found or invalid: {image_path}") h, w = image.shape[:2] # Image height and width # Find contours in the mask contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Determine file mode: "w" for overwrite or "a" for append file_mode = "a" if append else "w" # Open the output .txt file with open(output_path, file_mode) as label_file: for contour in contours: # Simplify the contour points to reduce the number of vertices epsilon = 0.01 * cv2.arcLength(contour, True) # Tolerance for approximation contour = cv2.approxPolyDP(contour, epsilon, True) # Normalize contour points (polygon vertices) normalized_vertices = [] for point in contour: x, y = point[0] # Extract x, y from the point x_normalized = x / w y_normalized = y / h normalized_vertices.extend([x_normalized, y_normalized]) # Write the polygon annotation to the label file if len(normalized_vertices) >= 6: # At least 3 points required for a polygon label_file.write(f"{class_id} " + " ".join(f"{v:.6f}" for v in normalized_vertices) + "\n") print(f"YOLO segmentation label saved: {output_path}") except Exception as e: print(f"Error converting mask to YOLO format: {e}") raise RuntimeError(f"Failed to convert {mask_path} for class {class_id}: {e}")