Spaces:
Runtime error
Runtime error
from llama_index.readers import TrafilaturaWebReader | |
from llama_index import VectorStoreIndex | |
from llama_index import ServiceContext | |
from langchain.llms import HuggingFaceHub | |
from llama_index.llms import LangChainLLM | |
import gradio as gr | |
repo_id = 'HuggingFaceH4/zephyr-7b-beta' | |
def loading_website(): return "Loading..." | |
def load_url(url): | |
documents = TrafilaturaWebReader().load_data([url]) | |
llm = LangChainLLM(llm=HuggingFaceHub(repo_id=repo_id, model_kwargs={'temperature': 0.2, 'max_tokens': 4096, 'top_p': 0.95})) | |
service_context = ServiceContext.from_defaults(llm=llm, embed_model="local:BAAI/bge-small-en-v1.5") | |
index = VectorStoreIndex.from_documents(documents, service_context=service_context) | |
global query_engine | |
query_engine = index.as_query_engine() | |
return 'Ready' | |
# def chat(query): | |
# response = query_engine.query(query) | |
# return str(response) | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, '' | |
def bot(history): | |
response = infer(history[-1][0]) | |
history[-1][1] = response | |
return history | |
def infer(question): | |
response = query_engine.query(question) | |
return str(response) | |
with gr.Blocks(theme='WeixuanYuan/Soft_dark') as demo: | |
with gr.Column(): | |
chatbot = gr.Chatbot([], elem_id='chatbot') | |
with gr.Row(): | |
web_address = gr.Textbox(label='Web Address', placeholder='http://karpathy.github.io/2019/04/25/recipe/') | |
website_status = gr.Textbox(label='Status', placeholder='', interactive=False) | |
load_website = gr.Button('Load Website') | |
with gr.Row(): | |
question = gr.Textbox(label='Question', placeholder='Type your query...') | |
submit_btn = gr.Button('Submit') | |
load_website.click(load_website, inputs=[web_address], outputs=[website_status], queue=False) | |
question.submit(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot) | |
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot) | |
demo.launch(share=True) |