Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# gr.Interface.load("models/ulysses115/pmvoice").launch() | |
import argparse | |
import json | |
import os | |
import re | |
import tempfile | |
import librosa | |
import numpy as np | |
import torch | |
from torch import no_grad, LongTensor | |
import commons | |
import utils | |
import gradio as gr | |
import gradio.utils as gr_utils | |
import gradio.processing_utils as gr_processing_utils | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import text_to_sequence, _clean_text | |
from mel_processing import spectrogram_torch | |
limitation = False#os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces | |
def audio_postprocess(self, y): | |
if y is None: | |
return None | |
self.temp_dir = "./" | |
if gr_utils.validate_url(y): | |
file = gr_processing_utils.download_to_file(y, dir=self.temp_dir) | |
elif isinstance(y, tuple): | |
sample_rate, data = y | |
file = tempfile.NamedTemporaryFile( | |
suffix=".wav", dir=self.temp_dir, delete=False | |
) | |
gr_processing_utils.audio_to_file(sample_rate, data, file.name) | |
else: | |
file = gr_processing_utils.create_tmp_copy_of_file(y, dir=self.temp_dir) | |
return gr_processing_utils.encode_url_or_file_to_base64(file.name) | |
gr.Audio.postprocess = audio_postprocess | |
def get_text(text, hps, is_symbol): | |
text_norm = text_to_sequence(text, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
def create_tts_fn(model, hps, speaker_ids): | |
def tts_fn(text, speaker, speed, is_symbol): | |
if limitation: | |
text_len = len(re.sub("\[([A-Z]{2})\]", "", text)) | |
max_len = 150 | |
if is_symbol: | |
max_len *= 3 | |
if text_len > max_len: | |
return "Error: Text is too long", None | |
speaker_id = speaker_ids[speaker] | |
stn_tst = get_text(text, hps, is_symbol) | |
with no_grad(): | |
x_tst = stn_tst.unsqueeze(0).to(device) | |
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device) | |
sid = LongTensor([speaker_id]).to(device) | |
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, | |
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() | |
del stn_tst, x_tst, x_tst_lengths, sid | |
return "Success", (hps.data.sampling_rate, audio) | |
return tts_fn | |
def create_to_symbol_fn(hps): | |
def to_symbol_fn(is_symbol_input, input_text, temp_text): | |
return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \ | |
else (temp_text, temp_text) | |
return to_symbol_fn | |
download_audio_js = """ | |
() =>{{ | |
let root = document.querySelector("body > gradio-app"); | |
if (root.shadowRoot != null) | |
root = root.shadowRoot; | |
let audio = root.querySelector("#{audio_id}").querySelector("audio"); | |
if (audio == undefined) | |
return; | |
audio = audio.src; | |
let oA = document.createElement("a"); | |
oA.download = Math.floor(Math.random()*100000000)+'.wav'; | |
oA.href = audio; | |
document.body.appendChild(oA); | |
oA.click(); | |
oA.remove(); | |
}} | |
""" | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
args = parser.parse_args() | |
device = torch.device(args.device) | |
models_tts = [] | |
with open("save_model/info.json", "r", encoding="utf-8") as f: | |
models_info = json.load(f) | |
for i, info in models_info.items(): | |
name = info["title"] | |
author = info["author"] | |
lang = info["lang"] | |
example = info["example"] | |
config_path = f"config.json" | |
model_path = f"G_1434000.pth" | |
cover = info["cover"] | |
cover_path = cover | |
hps = utils.get_hparams_from_file(config_path) | |
model = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model) | |
utils.load_checkpoint(model_path, model, None) | |
model.eval().to(device) | |
speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"] | |
speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"] | |
t = info["type"] | |
if t == "vits": | |
models_tts.append((name, author, cover_path, speakers, lang, example, | |
symbols, create_tts_fn(model, hps, speaker_ids), | |
create_to_symbol_fn(hps))) | |
app = gr.Blocks() | |
with app: | |
for i, (name, author, cover_path, speakers, lang, example, symbols, tts_fn, | |
to_symbol_fn) in enumerate(models_tts): | |
with gr.TabItem(f"model{i}"): | |
with gr.Column(): | |
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value=example, | |
elem_id=f"tts-input{i}") | |
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers, | |
type="index", value=speakers[0]) | |
tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1) | |
with gr.Accordion(label="Advanced Options", open=False): | |
temp_text_var = gr.Variable() | |
symbol_input = gr.Checkbox(value=False, label="Symbol input") | |
symbol_list = gr.Dataset(label="Symbol list", components=[tts_input1], | |
samples=[[x] for x in symbols], | |
elem_id=f"symbol-list{i}") | |
symbol_list_json = gr.Json(value=symbols, visible=False) | |
tts_submit = gr.Button("Generate", variant="primary") | |
tts_output1 = gr.Textbox(label="Output Message") | |
tts_output2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio{i}") | |
download = gr.Button("Download Audio") | |
download.click(None, [], [], _js=download_audio_js.format(audio_id=f"tts-audio{i}")) | |
tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, symbol_input], | |
[tts_output1, tts_output2]) | |
symbol_input.change(to_symbol_fn, | |
[symbol_input, tts_input1, temp_text_var], | |
[tts_input1, temp_text_var]) | |
symbol_list.click(None, [symbol_list, symbol_list_json], [], | |
_js=f""" | |
(i,symbols) => {{ | |
let root = document.querySelector("body > gradio-app"); | |
if (root.shadowRoot != null) | |
root = root.shadowRoot; | |
let text_input = root.querySelector("#tts-input{i}").querySelector("textarea"); | |
let startPos = text_input.selectionStart; | |
let endPos = text_input.selectionEnd; | |
let oldTxt = text_input.value; | |
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos); | |
text_input.value = result; | |
let x = window.scrollX, y = window.scrollY; | |
text_input.focus(); | |
text_input.selectionStart = startPos + symbols[i].length; | |
text_input.selectionEnd = startPos + symbols[i].length; | |
text_input.blur(); | |
window.scrollTo(x, y); | |
return []; | |
}}""") | |
app.queue(concurrency_count=3).launch(show_api=True, share=args.share) |