Spaces:
Sleeping
Sleeping
ulysses115
commited on
Commit
•
2d8ad0f
1
Parent(s):
1c96e2d
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
|
3 |
+
# gr.Interface.load("models/ulysses115/pmvoice").launch()
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
import tempfile
|
10 |
+
|
11 |
+
import librosa
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from torch import no_grad, LongTensor
|
15 |
+
import commons
|
16 |
+
import utils
|
17 |
import gradio as gr
|
18 |
+
import gradio.utils as gr_utils
|
19 |
+
import gradio.processing_utils as gr_processing_utils
|
20 |
+
from models import SynthesizerTrn
|
21 |
+
from text import text_to_sequence, _clean_text
|
22 |
+
from mel_processing import spectrogram_torch
|
23 |
+
|
24 |
+
limitation = False#os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
25 |
+
|
26 |
+
|
27 |
+
def audio_postprocess(self, y):
|
28 |
+
if y is None:
|
29 |
+
return None
|
30 |
+
|
31 |
+
if gr_utils.validate_url(y):
|
32 |
+
file = gr_processing_utils.download_to_file(y, dir=self.temp_dir)
|
33 |
+
elif isinstance(y, tuple):
|
34 |
+
sample_rate, data = y
|
35 |
+
file = tempfile.NamedTemporaryFile(
|
36 |
+
suffix=".wav", dir=self.temp_dir, delete=False
|
37 |
+
)
|
38 |
+
gr_processing_utils.audio_to_file(sample_rate, data, file.name)
|
39 |
+
else:
|
40 |
+
file = gr_processing_utils.create_tmp_copy_of_file(y, dir=self.temp_dir)
|
41 |
+
|
42 |
+
return gr_processing_utils.encode_url_or_file_to_base64(file.name)
|
43 |
+
|
44 |
+
|
45 |
+
gr.Audio.postprocess = audio_postprocess
|
46 |
+
|
47 |
+
|
48 |
+
def get_text(text, hps, is_symbol):
|
49 |
+
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
50 |
+
if hps.data.add_blank:
|
51 |
+
text_norm = commons.intersperse(text_norm, 0)
|
52 |
+
text_norm = LongTensor(text_norm)
|
53 |
+
return text_norm
|
54 |
+
|
55 |
+
|
56 |
+
def create_tts_fn(model, hps, speaker_ids):
|
57 |
+
def tts_fn(text, speaker, speed, is_symbol):
|
58 |
+
if limitation:
|
59 |
+
text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
|
60 |
+
max_len = 150
|
61 |
+
if is_symbol:
|
62 |
+
max_len *= 3
|
63 |
+
if text_len > max_len:
|
64 |
+
return "Error: Text is too long", None
|
65 |
+
|
66 |
+
speaker_id = speaker_ids[speaker]
|
67 |
+
stn_tst = get_text(text, hps, is_symbol)
|
68 |
+
with no_grad():
|
69 |
+
x_tst = stn_tst.unsqueeze(0).to(device)
|
70 |
+
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
|
71 |
+
sid = LongTensor([speaker_id]).to(device)
|
72 |
+
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
|
73 |
+
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
74 |
+
del stn_tst, x_tst, x_tst_lengths, sid
|
75 |
+
return "Success", (hps.data.sampling_rate, audio)
|
76 |
+
|
77 |
+
return tts_fn
|
78 |
+
|
79 |
+
|
80 |
+
def create_to_symbol_fn(hps):
|
81 |
+
def to_symbol_fn(is_symbol_input, input_text, temp_text):
|
82 |
+
return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \
|
83 |
+
else (temp_text, temp_text)
|
84 |
+
|
85 |
+
return to_symbol_fn
|
86 |
+
|
87 |
+
|
88 |
+
download_audio_js = """
|
89 |
+
() =>{{
|
90 |
+
let root = document.querySelector("body > gradio-app");
|
91 |
+
if (root.shadowRoot != null)
|
92 |
+
root = root.shadowRoot;
|
93 |
+
let audio = root.querySelector("#{audio_id}").querySelector("audio");
|
94 |
+
if (audio == undefined)
|
95 |
+
return;
|
96 |
+
audio = audio.src;
|
97 |
+
let oA = document.createElement("a");
|
98 |
+
oA.download = Math.floor(Math.random()*100000000)+'.wav';
|
99 |
+
oA.href = audio;
|
100 |
+
document.body.appendChild(oA);
|
101 |
+
oA.click();
|
102 |
+
oA.remove();
|
103 |
+
}}
|
104 |
+
"""
|
105 |
+
|
106 |
+
if __name__ == '__main__':
|
107 |
+
parser = argparse.ArgumentParser()
|
108 |
+
parser.add_argument('--device', type=str, default='cpu')
|
109 |
+
parser.add_argument("--share", action="store_true", default=True, help="share gradio app")
|
110 |
+
args = parser.parse_args()
|
111 |
+
|
112 |
+
device = torch.device(args.device)
|
113 |
+
models_tts = []
|
114 |
+
with open("saved_model/info.json", "r", encoding="utf-8") as f:
|
115 |
+
models_info = json.load(f)
|
116 |
+
for i, info in models_info.items():
|
117 |
+
name = info["title"]
|
118 |
+
author = info["author"]
|
119 |
+
lang = info["lang"]
|
120 |
+
example = info["example"]
|
121 |
+
config_path = f"saved_model/{i}/config.json"
|
122 |
+
model_path = f"saved_model/{i}/model.pth"
|
123 |
+
cover = info["cover"]
|
124 |
+
cover_path = f"saved_model/{i}/{cover}" if cover else None
|
125 |
+
hps = utils.get_hparams_from_file(config_path)
|
126 |
+
model = SynthesizerTrn(
|
127 |
+
len(hps.symbols),
|
128 |
+
hps.data.filter_length // 2 + 1,
|
129 |
+
hps.train.segment_size // hps.data.hop_length,
|
130 |
+
n_speakers=hps.data.n_speakers,
|
131 |
+
**hps.model)
|
132 |
+
utils.load_checkpoint(model_path, model, None)
|
133 |
+
model.eval().to(device)
|
134 |
+
speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
|
135 |
+
speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]
|
136 |
+
|
137 |
+
t = info["type"]
|
138 |
+
if t == "vits":
|
139 |
+
models_tts.append((name, author, cover_path, speakers, lang, example,
|
140 |
+
hps.symbols, create_tts_fn(model, hps, speaker_ids),
|
141 |
+
create_to_symbol_fn(hps)))
|
142 |
+
|
143 |
+
app = gr.Blocks()
|
144 |
+
|
145 |
+
with app:
|
146 |
+
for i, (name, author, cover_path, speakers, lang, example, symbols, tts_fn,
|
147 |
+
to_symbol_fn) in enumerate(models_tts):
|
148 |
+
with gr.TabItem(f"model{i}"):
|
149 |
+
with gr.Column():
|
150 |
+
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value=example,
|
151 |
+
elem_id=f"tts-input{i}")
|
152 |
+
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
|
153 |
+
type="index", value=speakers[0])
|
154 |
+
tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1)
|
155 |
+
with gr.Accordion(label="Advanced Options", open=False):
|
156 |
+
temp_text_var = gr.Variable()
|
157 |
+
symbol_input = gr.Checkbox(value=False, label="Symbol input")
|
158 |
+
symbol_list = gr.Dataset(label="Symbol list", components=[tts_input1],
|
159 |
+
samples=[[x] for x in symbols],
|
160 |
+
elem_id=f"symbol-list{i}")
|
161 |
+
symbol_list_json = gr.Json(value=symbols, visible=False)
|
162 |
+
tts_submit = gr.Button("Generate", variant="primary")
|
163 |
+
tts_output1 = gr.Textbox(label="Output Message")
|
164 |
+
tts_output2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio{i}")
|
165 |
+
download = gr.Button("Download Audio")
|
166 |
+
download.click(None, [], [], _js=download_audio_js.format(audio_id=f"tts-audio{i}"))
|
167 |
|
168 |
+
tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, symbol_input],
|
169 |
+
[tts_output1, tts_output2])
|
170 |
+
symbol_input.change(to_symbol_fn,
|
171 |
+
[symbol_input, tts_input1, temp_text_var],
|
172 |
+
[tts_input1, temp_text_var])
|
173 |
+
symbol_list.click(None, [symbol_list, symbol_list_json], [],
|
174 |
+
_js=f"""
|
175 |
+
(i,symbols) => {{
|
176 |
+
let root = document.querySelector("body > gradio-app");
|
177 |
+
if (root.shadowRoot != null)
|
178 |
+
root = root.shadowRoot;
|
179 |
+
let text_input = root.querySelector("#tts-input{i}").querySelector("textarea");
|
180 |
+
let startPos = text_input.selectionStart;
|
181 |
+
let endPos = text_input.selectionEnd;
|
182 |
+
let oldTxt = text_input.value;
|
183 |
+
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos);
|
184 |
+
text_input.value = result;
|
185 |
+
let x = window.scrollX, y = window.scrollY;
|
186 |
+
text_input.focus();
|
187 |
+
text_input.selectionStart = startPos + symbols[i].length;
|
188 |
+
text_input.selectionEnd = startPos + symbols[i].length;
|
189 |
+
text_input.blur();
|
190 |
+
window.scrollTo(x, y);
|
191 |
+
return [];
|
192 |
+
}}""")
|
193 |
+
app.queue(concurrency_count=1).launch(show_api=True, share=args.share)
|