Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,22 +8,32 @@ import pandas as pd
|
|
8 |
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
import tempfile
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Initialize the model globally
|
13 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
14 |
|
15 |
def process_pdf(pdf_path):
|
|
|
16 |
# Open the PDF
|
17 |
doc = fitz.open(pdf_path)
|
18 |
texts = [page.get_text() for page in doc]
|
|
|
19 |
return " ".join(texts)
|
20 |
|
21 |
def create_embeddings(text):
|
|
|
22 |
sentences = text.split(". ") # A simple split; consider a more robust sentence splitter
|
23 |
embeddings = model.encode(sentences)
|
|
|
24 |
return embeddings, sentences
|
25 |
|
26 |
def generate_plot(query, pdf_file):
|
|
|
27 |
# Generate embeddings for the query
|
28 |
query_embedding = model.encode([query])[0]
|
29 |
|
@@ -31,6 +41,7 @@ def generate_plot(query, pdf_file):
|
|
31 |
text = process_pdf(pdf_file.name)
|
32 |
embeddings, sentences = create_embeddings(text)
|
33 |
|
|
|
34 |
# Prepare the data for UMAP and visualization
|
35 |
all_embeddings = np.vstack([embeddings, query_embedding])
|
36 |
all_sentences = sentences + [query]
|
@@ -39,6 +50,7 @@ def generate_plot(query, pdf_file):
|
|
39 |
umap_transform = umap.UMAP(n_neighbors=15, min_dist=0.0, n_components=2, random_state=42)
|
40 |
umap_embeddings = umap_transform.fit_transform(all_embeddings)
|
41 |
|
|
|
42 |
# Find the closest sentences to the query
|
43 |
distances = cosine_similarity([query_embedding], embeddings)[0]
|
44 |
closest_indices = distances.argsort()[-5:][::-1] # Adjust the number as needed
|
@@ -59,16 +71,20 @@ def generate_plot(query, pdf_file):
|
|
59 |
hover = HoverTool(tooltips=[("Content", "@content")])
|
60 |
p.add_tools(hover)
|
61 |
|
|
|
62 |
# Save the plot to an HTML file
|
63 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".html")
|
64 |
output_file(temp_file.name)
|
65 |
save(p)
|
|
|
66 |
return temp_file.name
|
67 |
|
68 |
def gradio_interface(pdf_file, query):
|
|
|
69 |
plot_path = generate_plot(query, pdf_file)
|
70 |
with open(plot_path, "r") as f:
|
71 |
html_content = f.read()
|
|
|
72 |
return html_content
|
73 |
|
74 |
iface = gr.Interface(
|
@@ -80,4 +96,4 @@ iface = gr.Interface(
|
|
80 |
)
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
-
iface.launch()
|
|
|
8 |
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
import tempfile
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# Set up logging
|
14 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
|
16 |
# Initialize the model globally
|
17 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
18 |
+
logging.info("Model loaded successfully.")
|
19 |
|
20 |
def process_pdf(pdf_path):
|
21 |
+
logging.info(f"Processing PDF: {pdf_path}")
|
22 |
# Open the PDF
|
23 |
doc = fitz.open(pdf_path)
|
24 |
texts = [page.get_text() for page in doc]
|
25 |
+
logging.info("PDF processed successfully.")
|
26 |
return " ".join(texts)
|
27 |
|
28 |
def create_embeddings(text):
|
29 |
+
logging.info("Creating embeddings.")
|
30 |
sentences = text.split(". ") # A simple split; consider a more robust sentence splitter
|
31 |
embeddings = model.encode(sentences)
|
32 |
+
logging.info("Embeddings created successfully.")
|
33 |
return embeddings, sentences
|
34 |
|
35 |
def generate_plot(query, pdf_file):
|
36 |
+
logging.info("Generating plot.")
|
37 |
# Generate embeddings for the query
|
38 |
query_embedding = model.encode([query])[0]
|
39 |
|
|
|
41 |
text = process_pdf(pdf_file.name)
|
42 |
embeddings, sentences = create_embeddings(text)
|
43 |
|
44 |
+
logging.info("Data prepared for UMAP.")
|
45 |
# Prepare the data for UMAP and visualization
|
46 |
all_embeddings = np.vstack([embeddings, query_embedding])
|
47 |
all_sentences = sentences + [query]
|
|
|
50 |
umap_transform = umap.UMAP(n_neighbors=15, min_dist=0.0, n_components=2, random_state=42)
|
51 |
umap_embeddings = umap_transform.fit_transform(all_embeddings)
|
52 |
|
53 |
+
logging.info("UMAP transformation completed.")
|
54 |
# Find the closest sentences to the query
|
55 |
distances = cosine_similarity([query_embedding], embeddings)[0]
|
56 |
closest_indices = distances.argsort()[-5:][::-1] # Adjust the number as needed
|
|
|
71 |
hover = HoverTool(tooltips=[("Content", "@content")])
|
72 |
p.add_tools(hover)
|
73 |
|
74 |
+
logging.info("Plot created successfully.")
|
75 |
# Save the plot to an HTML file
|
76 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".html")
|
77 |
output_file(temp_file.name)
|
78 |
save(p)
|
79 |
+
logging.info("Plot saved to file.")
|
80 |
return temp_file.name
|
81 |
|
82 |
def gradio_interface(pdf_file, query):
|
83 |
+
logging.info("Gradio interface called.")
|
84 |
plot_path = generate_plot(query, pdf_file)
|
85 |
with open(plot_path, "r") as f:
|
86 |
html_content = f.read()
|
87 |
+
logging.info("Returning HTML content.")
|
88 |
return html_content
|
89 |
|
90 |
iface = gr.Interface(
|
|
|
96 |
)
|
97 |
|
98 |
if __name__ == "__main__":
|
99 |
+
iface.launch()
|