umarigan's picture
Update app.py
33215f7 verified
import gradio as gr
import torch
import uuid
import json
import librosa
import os
import tempfile
import soundfile as sf
import scipy.io.wavfile as wav
from transformers import VitsModel, AutoTokenizer, set_seed
from nemo.collections.asr.models import EncDecMultiTaskModel
# Constants
SAMPLE_RATE = 16000 # Hz
# Load ASR model
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
decode_cfg = canary_model.cfg.decoding
decode_cfg.beam.beam_size = 1
canary_model.change_decoding_strategy(decode_cfg)
# Function to convert audio to text using ASR
def gen_text(audio_filepath, action, source_lang, target_lang):
if audio_filepath is None:
raise gr.Error("Please provide some input audio.")
utt_id = uuid.uuid4()
with tempfile.TemporaryDirectory() as tmpdir:
# Convert to 16 kHz
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
if sr != SAMPLE_RATE:
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
converted_audio_filepath = os.path.join(tmpdir, f"{utt_id}.wav")
sf.write(converted_audio_filepath, data, SAMPLE_RATE)
# Transcribe or translate audio
duration = len(data) / SAMPLE_RATE
manifest_data = {
"audio_filepath": converted_audio_filepath,
"taskname": action,
"source_lang": source_lang,
"target_lang": source_lang if action == "asr" else target_lang,
"pnc": "no",
"answer": "predict",
"duration": str(duration),
}
manifest_filepath = os.path.join(tmpdir, f"{utt_id}.json")
with open(manifest_filepath, 'w') as fout:
fout.write(json.dumps(manifest_data))
predicted_text = canary_model.transcribe(manifest_filepath)[0]
return predicted_text
# Function to convert text to speech using TTS
def gen_speech(text, lang):
set_seed(555) # Make it deterministic
model = f"facebook/mms-tts-{lang}"
# load TTS model
tts_model = VitsModel.from_pretrained(model)
tts_tokenizer = AutoTokenizer.from_pretrained(model)
input_text = tts_tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = tts_model(**input_text)
waveform_np = outputs.waveform[0].cpu().numpy()
return SAMPLE_RATE, waveform_np
# Main function for speech-to-speech translation
def speech_to_speech_translation(audio_filepath, source_lang, target_lang):
translation = gen_text(audio_filepath, "s2t_translation", source_lang, target_lang)
sample_rate, synthesized_speech = gen_speech(translation, target_lang)
return sample_rate, synthesized_speech
# Define supported languages
LANGUAGES = {
"English": "eng",
"German": "deu",
"Spanish": "spa",
"French": "fra"
}
# Create Gradio interface
demo = gr.Blocks()
with demo:
gr.Markdown("# Multilingual Speech-to-Speech Translation")
gr.Markdown("Translate speech from one language to another.")
with gr.Row():
source_lang = gr.Dropdown(choices=list(LANGUAGES.keys()), value="English", label="Source Language")
target_lang = gr.Dropdown(choices=list(LANGUAGES.keys()), value="French", label="Target Language")
with gr.Tabs():
with gr.TabItem("Microphone"):
mic_input = gr.Audio(source="microphone", type="filepath")
mic_output = gr.Audio(label="Generated Speech", type="numpy")
mic_button = gr.Button("Translate")
with gr.TabItem("Audio File"):
file_input = gr.Audio(source="upload", type="filepath")
file_output = gr.Audio(label="Generated Speech", type="numpy")
file_button = gr.Button("Translate")
mic_button.click(
speech_to_speech_translation,
inputs=[mic_input, source_lang, target_lang],
outputs=mic_output
)
file_button.click(
speech_to_speech_translation,
inputs=[file_input, source_lang, target_lang],
outputs=file_output
)
demo.launch()