File size: 13,075 Bytes
bd86ed9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import torch
from torch.utils.data import Dataset, DataLoader
import torch.utils.data.distributed
from torchvision import transforms
import numpy as np
from PIL import Image
import os
import random
import copy
import cv2
from utils import DistributedSamplerNoEvenlyDivisible
def _is_pil_image(img):
return isinstance(img, Image.Image)
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
def preprocessing_transforms(mode):
return transforms.Compose([
ToTensor(mode=mode)
])
class NewDataLoader(object):
def __init__(self, args, mode):
if mode == 'train':
self.training_samples = DataLoadPreprocess(args, mode, transform=preprocessing_transforms(mode))
if args.distributed:
self.train_sampler = torch.utils.data.distributed.DistributedSampler(self.training_samples)
else:
self.train_sampler = None
self.data = DataLoader(self.training_samples, args.batch_size,
shuffle=(self.train_sampler is None),
num_workers=args.num_threads,
pin_memory=True,
sampler=self.train_sampler)
elif mode == 'online_eval':
self.testing_samples = DataLoadPreprocess(args, mode, transform=preprocessing_transforms(mode))
if args.distributed:
# self.eval_sampler = torch.utils.data.distributed.DistributedSampler(self.testing_samples, shuffle=False)
self.eval_sampler = DistributedSamplerNoEvenlyDivisible(self.testing_samples, shuffle=False)
else:
self.eval_sampler = None
self.data = DataLoader(self.testing_samples, 1,
shuffle=False,
num_workers=1,
pin_memory=True,
sampler=self.eval_sampler)
elif mode == 'test':
self.testing_samples = DataLoadPreprocess(args, mode, transform=preprocessing_transforms(mode))
self.data = DataLoader(self.testing_samples, 1, shuffle=False, num_workers=1)
else:
print('mode should be one of \'train, test, online_eval\'. Got {}'.format(mode))
class DataLoadPreprocess(Dataset):
def __init__(self, args, mode, transform=None, is_for_online_eval=False):
self.args = args
if mode == 'online_eval':
with open(args.filenames_file_eval, 'r') as f:
self.filenames = f.readlines()
else:
with open(args.filenames_file, 'r') as f:
self.filenames = f.readlines()
self.mode = mode
self.transform = transform
self.to_tensor = ToTensor
self.is_for_online_eval = is_for_online_eval
def __getitem__(self, idx):
sample_path = self.filenames[idx]
# focal = float(sample_path.split()[2])
focal = 518.8579
if self.mode == 'train':
if self.args.dataset == 'kitti':
rgb_file = sample_path.split()[0]
depth_file = os.path.join(sample_path.split()[0].split('/')[0], sample_path.split()[1])
if self.args.use_right is True and random.random() > 0.5:
rgb_file = rgb_file.replace('image_02', 'image_03')
depth_file = depth_file.replace('image_02', 'image_03')
else:
rgb_file = sample_path.split()[0]
depth_file = sample_path.split()[1]
image_path = os.path.join(self.args.data_path, rgb_file)
depth_path = os.path.join(self.args.gt_path, depth_file)
image = Image.open(image_path)
depth_gt = Image.open(depth_path)
if self.args.do_kb_crop is True:
height = image.height
width = image.width
top_margin = int(height - 352)
left_margin = int((width - 1216) / 2)
depth_gt = depth_gt.crop((left_margin, top_margin, left_margin + 1216, top_margin + 352))
image = image.crop((left_margin, top_margin, left_margin + 1216, top_margin + 352))
# To avoid blank boundaries due to pixel registration
if self.args.dataset == 'nyu':
if self.args.input_height == 480:
depth_gt = np.array(depth_gt)
valid_mask = np.zeros_like(depth_gt)
valid_mask[45:472, 43:608] = 1
depth_gt[valid_mask==0] = 0
depth_gt = Image.fromarray(depth_gt)
else:
depth_gt = depth_gt.crop((43, 45, 608, 472))
image = image.crop((43, 45, 608, 472))
if self.args.do_random_rotate is True:
random_angle = (random.random() - 0.5) * 2 * self.args.degree
image = self.rotate_image(image, random_angle)
depth_gt = self.rotate_image(depth_gt, random_angle, flag=Image.NEAREST)
image = np.asarray(image, dtype=np.float32) / 255.0
depth_gt = np.asarray(depth_gt, dtype=np.float32)
depth_gt = np.expand_dims(depth_gt, axis=2)
if self.args.dataset == 'nyu':
depth_gt = depth_gt / 1000.0
else:
depth_gt = depth_gt / 256.0
if image.shape[0] != self.args.input_height or image.shape[1] != self.args.input_width:
image, depth_gt = self.random_crop(image, depth_gt, self.args.input_height, self.args.input_width)
image, depth_gt = self.train_preprocess(image, depth_gt)
image, depth_gt = self.Cut_Flip(image, depth_gt)
sample = {'image': image, 'depth': depth_gt, 'focal': focal}
else:
if self.mode == 'online_eval':
data_path = self.args.data_path_eval
else:
data_path = self.args.data_path
image_path = os.path.join(data_path, "./" + sample_path.split()[0])
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
image = cv2.resize(image, (640, 480))
if self.mode == 'online_eval':
gt_path = self.args.gt_path_eval
depth_path = os.path.join(gt_path, "./" + sample_path.split()[1])
if self.args.dataset == 'kitti':
depth_path = os.path.join(gt_path, sample_path.split()[0].split('/')[0], sample_path.split()[1])
has_valid_depth = False
try:
depth_gt = Image.open(depth_path)
has_valid_depth = True
except IOError:
depth_gt = False
# print('Missing gt for {}'.format(image_path))
if has_valid_depth:
depth_gt = np.asarray(depth_gt, dtype=np.uint16) # 2
depth_gt = np.bitwise_or(np.right_shift(depth_gt, 3), np.left_shift(depth_gt, 16 - 3)) # 3
depth_gt = np.expand_dims(depth_gt, axis=2)
if self.args.dataset == 'nyu':
depth_gt = depth_gt.astype(np.single) / 1000 # 4
depth_gt = depth_gt.astype(np.float32) # 5
else:
depth_gt = depth_gt / 256.0
if self.args.do_kb_crop is True:
height = image.shape[0]
width = image.shape[1]
top_margin = int(height - 352)
left_margin = int((width - 1216) / 2)
image = image[top_margin:top_margin + 352, left_margin:left_margin + 1216, :]
if self.mode == 'online_eval' and has_valid_depth:
depth_gt = depth_gt[top_margin:top_margin + 352, left_margin:left_margin + 1216, :]
if self.mode == 'online_eval':
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': has_valid_depth}
else:
sample = {'image': image, 'focal': focal}
if self.transform:
sample = self.transform(sample)
return sample
def rotate_image(self, image, angle, flag=Image.BILINEAR):
result = image.rotate(angle, resample=flag)
return result
def random_crop(self, img, depth, height, width):
assert img.shape[0] >= height
assert img.shape[1] >= width
assert img.shape[0] == depth.shape[0]
assert img.shape[1] == depth.shape[1]
x = random.randint(0, img.shape[1] - width)
y = random.randint(0, img.shape[0] - height)
img = img[y:y + height, x:x + width, :]
depth = depth[y:y + height, x:x + width, :]
return img, depth
def train_preprocess(self, image, depth_gt):
# Random flipping
do_flip = random.random()
if do_flip > 0.5:
image = (image[:, ::-1, :]).copy()
depth_gt = (depth_gt[:, ::-1, :]).copy()
# Random gamma, brightness, color augmentation
do_augment = random.random()
if do_augment > 0.5:
image = self.augment_image(image)
return image, depth_gt
def augment_image(self, image):
# gamma augmentation
gamma = random.uniform(0.9, 1.1)
image_aug = image ** gamma
# brightness augmentation
if self.args.dataset == 'nyu':
brightness = random.uniform(0.75, 1.25)
else:
brightness = random.uniform(0.9, 1.1)
image_aug = image_aug * brightness
# color augmentation
colors = np.random.uniform(0.9, 1.1, size=3)
white = np.ones((image.shape[0], image.shape[1]))
color_image = np.stack([white * colors[i] for i in range(3)], axis=2)
image_aug *= color_image
image_aug = np.clip(image_aug, 0, 1)
return image_aug
def Cut_Flip(self, image, depth):
p = random.random()
if p < 0.5:
return image, depth
image_copy = copy.deepcopy(image)
depth_copy = copy.deepcopy(depth)
h, w, c = image.shape
N = 2
h_list = []
h_interval_list = [] # hight interval
for i in range(N-1):
h_list.append(random.randint(int(0.2*h), int(0.8*h)))
h_list.append(h)
h_list.append(0)
h_list.sort()
h_list_inv = np.array([h]*(N+1))-np.array(h_list)
for i in range(len(h_list)-1):
h_interval_list.append(h_list[i+1]-h_list[i])
for i in range(N):
image[h_list[i]:h_list[i+1], :, :] = image_copy[h_list_inv[i]-h_interval_list[i]:h_list_inv[i], :, :]
depth[h_list[i]:h_list[i+1], :, :] = depth_copy[h_list_inv[i]-h_interval_list[i]:h_list_inv[i], :, :]
return image, depth
def __len__(self):
return len(self.filenames)
class ToTensor(object):
def __init__(self, mode):
self.mode = mode
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def __call__(self, sample):
image, focal = sample['image'], sample['focal']
image = self.to_tensor(image)
image = self.normalize(image)
if self.mode == 'test':
return {'image': image, 'focal': focal}
depth = sample['depth']
if self.mode == 'train':
depth = self.to_tensor(depth)
return {'image': image, 'depth': depth, 'focal': focal}
else:
has_valid_depth = sample['has_valid_depth']
return {'image': image, 'depth': depth, 'focal': focal, 'has_valid_depth': has_valid_depth}
def to_tensor(self, pic):
if not (_is_pil_image(pic) or _is_numpy_image(pic)):
raise TypeError(
'pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
if isinstance(pic, np.ndarray):
img = torch.from_numpy(pic.transpose((2, 0, 1)))
return img
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float()
else:
return img
|