|
import torch |
|
import torch.backends.cudnn as cudnn |
|
|
|
import os, sys |
|
import argparse |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
from utils import post_process_depth, flip_lr, compute_errors |
|
from networks.NewCRFDepth import NewCRFDepth |
|
from PIL import Image |
|
from torchvision import transforms |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def convert_arg_line_to_args(arg_line): |
|
for arg in arg_line.split(): |
|
if not arg.strip(): |
|
continue |
|
yield arg |
|
|
|
|
|
parser = argparse.ArgumentParser(description='IEBins PyTorch implementation.', fromfile_prefix_chars='@') |
|
parser.convert_arg_line_to_args = convert_arg_line_to_args |
|
|
|
parser.add_argument('--model_name', type=str, help='model name', default='iebins') |
|
parser.add_argument('--encoder', type=str, help='type of encoder, base07, large07', default='large07') |
|
parser.add_argument('--checkpoint_path', type=str, help='path to a checkpoint to load', default='') |
|
parser.add_argument('--dataset', type=str, help='dataset to train on, kitti or nyu', default='nyu') |
|
parser.add_argument('--image_path', type=str, help='path to the image for inference', required=False) |
|
parser.add_argument('--max_depth', type=float, help='maximum depth in estimation', default=10) |
|
|
|
|
|
if sys.argv.__len__() == 2: |
|
arg_filename_with_prefix = '@' + sys.argv[1] |
|
args = parser.parse_args([arg_filename_with_prefix]) |
|
else: |
|
args = parser.parse_args() |
|
|
|
|
|
def inference(model, post_process=False): |
|
|
|
image = np.asarray(Image.open(args.image_path), dtype=np.float32) / 255.0 |
|
|
|
if args.dataset == 'kitti': |
|
height = image.shape[0] |
|
width = image.shape[1] |
|
top_margin = int(height - 352) |
|
left_margin = int((width - 1216) / 2) |
|
image = image[top_margin:top_margin + 352, left_margin:left_margin + 1216, :] |
|
|
|
image = torch.from_numpy(image.transpose((2, 0, 1))) |
|
image = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(image) |
|
|
|
with torch.no_grad(): |
|
image = torch.autograd.Variable(image.unsqueeze(0).cuda()) |
|
|
|
pred_depths_r_list, _, _ = model(image) |
|
if post_process: |
|
image_flipped = flip_lr(image) |
|
pred_depths_r_list_flipped, _, _ = model(image_flipped) |
|
pred_depth = post_process_depth(pred_depths_r_list[-1], pred_depths_r_list_flipped[-1]) |
|
|
|
pred_depth = pred_depth.cpu().numpy().squeeze() |
|
|
|
if args.dataset == 'kitti': |
|
plt.imsave('depth.png', np.log10(pred_depth), cmap='magma') |
|
else: |
|
plt.imsave('depth.png', pred_depth, cmap='jet') |
|
|
|
|
|
def main_worker(args): |
|
|
|
model = NewCRFDepth(version=args.encoder, inv_depth=False, max_depth=args.max_depth, pretrained=None) |
|
model.train() |
|
|
|
num_params = sum([np.prod(p.size()) for p in model.parameters()]) |
|
print("== Total number of parameters: {}".format(num_params)) |
|
|
|
num_params_update = sum([np.prod(p.shape) for p in model.parameters() if p.requires_grad]) |
|
print("== Total number of learning parameters: {}".format(num_params_update)) |
|
|
|
model = torch.nn.DataParallel(model) |
|
model.cuda() |
|
|
|
print("== Model Initialized") |
|
|
|
if args.checkpoint_path != '': |
|
if os.path.isfile(args.checkpoint_path): |
|
checkpoint = torch.load(args.checkpoint_path, map_location='cpu') |
|
model.load_state_dict(checkpoint['model']) |
|
print("== Loaded checkpoint '{}'".format(args.checkpoint_path)) |
|
del checkpoint |
|
else: |
|
print("== No checkpoint found at '{}'".format(args.checkpoint_path)) |
|
|
|
cudnn.benchmark = True |
|
|
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
inference(model, post_process=True) |
|
|
|
|
|
def main(): |
|
torch.cuda.empty_cache() |
|
args.distributed = False |
|
ngpus_per_node = torch.cuda.device_count() |
|
if ngpus_per_node > 1: |
|
print("This machine has more than 1 gpu. Please set \'CUDA_VISIBLE_DEVICES=0\'") |
|
return -1 |
|
|
|
main_worker(args) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|