umuthopeyildirim commited on
Commit
5112818
1 Parent(s): 2c2d3cf

Resize and normalize input image before processing

Browse files
Files changed (1) hide show
  1. app.py +9 -4
app.py CHANGED
@@ -75,20 +75,26 @@ with gr.Blocks(css=css) as demo:
75
  type='numpy', elem_id='img-display-input')
76
  depth_image_slider = ImageSlider(
77
  label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,)
78
- raw_file = gr.File(
79
- label="16-bit raw depth (can be considered as disparity)")
80
  submit = gr.Button("Submit")
81
 
82
  def on_submit(image):
83
  original_image = image.copy()
84
 
85
- # This is for resizing the image to 518x518
 
86
  h, w = image.shape[:2]
 
 
 
 
87
 
 
88
  image = np.asarray(image, dtype=np.float32) / 255.0
89
  image = torch.from_numpy(image.transpose((2, 0, 1)))
90
  image = Normalize(mean=[0.485, 0.456, 0.406], std=[
91
  0.229, 0.224, 0.225])(image)
 
92
  with torch.no_grad():
93
  image = torch.autograd.Variable(image.unsqueeze(0))
94
  print("== Processing image")
@@ -104,7 +110,6 @@ with gr.Blocks(css=css) as demo:
104
 
105
  # Continue with your file saving operations
106
  tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
107
- # cv2.imwrite(tmp.name, output_image)
108
  plt.imsave(tmp.name, pred_depth, cmap='jet')
109
 
110
  return [(original_image, tmp.name), tmp.name]
 
75
  type='numpy', elem_id='img-display-input')
76
  depth_image_slider = ImageSlider(
77
  label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,)
78
+ raw_file = gr.File(label="Download Depth Map")
 
79
  submit = gr.Button("Submit")
80
 
81
  def on_submit(image):
82
  original_image = image.copy()
83
 
84
+ # Resize the image if it is larger than 640x480
85
+ max_width, max_height = 640, 480
86
  h, w = image.shape[:2]
87
+ if w > max_width or h > max_height:
88
+ scaling_factor = min(max_width / w, max_height / h)
89
+ image = cv2.resize(image, None, fx=scaling_factor,
90
+ fy=scaling_factor, interpolation=cv2.INTER_AREA)
91
 
92
+ # Normalize the image
93
  image = np.asarray(image, dtype=np.float32) / 255.0
94
  image = torch.from_numpy(image.transpose((2, 0, 1)))
95
  image = Normalize(mean=[0.485, 0.456, 0.406], std=[
96
  0.229, 0.224, 0.225])(image)
97
+
98
  with torch.no_grad():
99
  image = torch.autograd.Variable(image.unsqueeze(0))
100
  print("== Processing image")
 
110
 
111
  # Continue with your file saving operations
112
  tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
 
113
  plt.imsave(tmp.name, pred_depth, cmap='jet')
114
 
115
  return [(original_image, tmp.name), tmp.name]