import torch import torch.backends.cudnn as cudnn import os, sys import argparse import numpy as np from tqdm import tqdm from utils import post_process_depth, flip_lr, compute_errors from networks.NewCRFDepth import NewCRFDepth from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt def convert_arg_line_to_args(arg_line): for arg in arg_line.split(): if not arg.strip(): continue yield arg parser = argparse.ArgumentParser(description='IEBins PyTorch implementation.', fromfile_prefix_chars='@') parser.convert_arg_line_to_args = convert_arg_line_to_args parser.add_argument('--model_name', type=str, help='model name', default='iebins') parser.add_argument('--encoder', type=str, help='type of encoder, base07, large07', default='large07') parser.add_argument('--checkpoint_path', type=str, help='path to a checkpoint to load', default='') parser.add_argument('--dataset', type=str, help='dataset to train on, kitti or nyu', default='nyu') parser.add_argument('--image_path', type=str, help='path to the image for inference', required=False) parser.add_argument('--max_depth', type=float, help='maximum depth in estimation', default=10) if sys.argv.__len__() == 2: arg_filename_with_prefix = '@' + sys.argv[1] args = parser.parse_args([arg_filename_with_prefix]) else: args = parser.parse_args() def inference(model, post_process=False): image = np.asarray(Image.open(args.image_path), dtype=np.float32) / 255.0 if args.dataset == 'kitti': height = image.shape[0] width = image.shape[1] top_margin = int(height - 352) left_margin = int((width - 1216) / 2) image = image[top_margin:top_margin + 352, left_margin:left_margin + 1216, :] image = torch.from_numpy(image.transpose((2, 0, 1))) image = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(image) with torch.no_grad(): image = torch.autograd.Variable(image.unsqueeze(0).cuda()) pred_depths_r_list, _, _ = model(image) if post_process: image_flipped = flip_lr(image) pred_depths_r_list_flipped, _, _ = model(image_flipped) pred_depth = post_process_depth(pred_depths_r_list[-1], pred_depths_r_list_flipped[-1]) pred_depth = pred_depth.cpu().numpy().squeeze() if args.dataset == 'kitti': plt.imsave('depth.png', np.log10(pred_depth), cmap='magma') else: plt.imsave('depth.png', pred_depth, cmap='jet') def main_worker(args): model = NewCRFDepth(version=args.encoder, inv_depth=False, max_depth=args.max_depth, pretrained=None) model.train() num_params = sum([np.prod(p.size()) for p in model.parameters()]) print("== Total number of parameters: {}".format(num_params)) num_params_update = sum([np.prod(p.shape) for p in model.parameters() if p.requires_grad]) print("== Total number of learning parameters: {}".format(num_params_update)) model = torch.nn.DataParallel(model) model.cuda() print("== Model Initialized") if args.checkpoint_path != '': if os.path.isfile(args.checkpoint_path): checkpoint = torch.load(args.checkpoint_path, map_location='cpu') model.load_state_dict(checkpoint['model']) print("== Loaded checkpoint '{}'".format(args.checkpoint_path)) del checkpoint else: print("== No checkpoint found at '{}'".format(args.checkpoint_path)) cudnn.benchmark = True # ===== Inference ====== model.eval() with torch.no_grad(): inference(model, post_process=True) def main(): torch.cuda.empty_cache() args.distributed = False ngpus_per_node = torch.cuda.device_count() if ngpus_per_node > 1: print("This machine has more than 1 gpu. Please set \'CUDA_VISIBLE_DEVICES=0\'") return -1 main_worker(args) if __name__ == '__main__': main()