Spaces:
Sleeping
Sleeping
File size: 9,656 Bytes
853a071 f5c3f28 d5116f8 f5c3f28 853a071 f5c3f28 853a071 f5c3f28 7288353 f5c3f28 7288353 f5c3f28 7288353 f5c3f28 159ca27 f5c3f28 7288353 853a071 f5c3f28 853a071 f5c3f28 7288353 f5c3f28 159ca27 f5c3f28 159ca27 f5c3f28 7288353 f5c3f28 7288353 f5c3f28 7288353 f5c3f28 853a071 7288353 f5c3f28 7288353 9c466e6 f5c3f28 9c466e6 f5c3f28 9c466e6 f5c3f28 9c466e6 7288353 9c466e6 f5c3f28 9c466e6 f5c3f28 9c466e6 f5c3f28 9c466e6 f5c3f28 9c466e6 f5c3f28 853a071 f5c3f28 159ca27 f5c3f28 159ca27 f5c3f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os
import sys
from dotenv import load_dotenv
import edgedb
from openai import OpenAI
from qdrant_client import QdrantClient
import streamlit as st
# Add the parent directory to the Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from pipelines.message import send_message # noqa
# st.set_page_config(page_title="Carlos AI Agent")
load_dotenv()
@st.cache_resource
def connect_to_services():
oa_client = OpenAI(
api_key=os.environ.get("OPENAI_API_KEY")
)
qdrant_client = QdrantClient(
url=os.environ.get("QDRANT_URL"),
api_key=os.environ.get("QDRANT_KEY")
)
edgedb_client = edgedb.create_client()
return oa_client, qdrant_client, edgedb_client
class Chatbot:
def __init__(self):
# Conteúdo dos botões do sidebar
if "topics" not in st.session_state:
st.session_state.topics = [
"Níveis da conta govbr.",
"Dúvidas no reconhecimento facial.",
"Como recuperar minha conta gov.br",
"Dúvidas para aumentar o nível com a CIN."
]
if "services" not in st.session_state:
oa_client, qdrant_client, edgedb_client = connect_to_services()
st.session_state.services = {
"oa_client": oa_client,
"qdrant_client": qdrant_client,
"edgedb_client": edgedb_client
}
if "chat" not in st.session_state and st.session_state.get('username'):
chat = st.session_state.services["edgedb_client"].query('''
Select Chat {
id
} filter .user.username = <str>$username and .prototipo.id = <uuid>$prototipo_id
''',
username=st.session_state.username,
prototipo_id=st.session_state.prototipo_id
)
if not chat:
chat = self._create_default_chat()
else:
chat = chat[0]
self.update_messages(chat)
st.session_state.chat = chat
if "is_feedback_active" not in st.session_state:
st.session_state.is_feedback_active = False
self.user_button_input = "" # Pergunta do usuário no chat
# self.is_feedback_active = False # Flag para ativar o feedback do o
def _create_default_chat(self):
chat = st.session_state.services["edgedb_client"].query('''
INSERT Chat {
user := (SELECT User FILTER .username = <str>$username),
prototipo := (SELECT Prototipo FILTER .id = <uuid>$prototipo_id)
}
''',
username=st.session_state.username,
prototipo_id=st.session_state.prototipo_id
)
message = st.session_state.services["edgedb_client"].query('''
SELECT (
INSERT Message {
content := "Como eu posso ajudar?",
role := "assistant",
chat := (SELECT Chat FILTER .id = <uuid>$chat_id)
}
) {
content,
role
}
''', chat_id=chat[0].id)
st.session_state.chat_history = message
return chat[0]
def _save_msg_to_db(self, msg, role):
st.session_state.services["edgedb_client"].query('''
INSERT Message {
content := <str>$content,
chat := (SELECT Chat FILTER .id = <uuid>$chat_id),
role := <str>$role
}
''', content=msg, chat_id=st.session_state.chat.id, role=role)
def mount_chatbot(self):
# Exibição do título e subtítulo
st.title("Bem-vindo à ajuda do gov.br")
st.caption("💬 Qual a sua dificuldade hoje? Estou aqui para ajudar!")
# Exibição do espaço para mandar mensagem
if user_query := st.chat_input(placeholder="Digite sua mensagem"):
st.session_state.is_feedback_active = False # Desativando o feedback
return user_query
def create_sidebar(self):
st.image('https://www.gov.br/++theme++padrao_govbr/img/govbr-logo-large.png', width=200)
st.header("Tópicos frequentes")
for topic in st.session_state.topics:
if st.button(topic, key=topic):
self.user_button_input = topic
st.session_state.is_feedback_active = False # Desativando o feedback
# Espaços em branco para organização
for _ in range(5):
st.write("")
# Botão centralizado
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
if st.button("LIMPAR HISTÓRICO"):
st.session_state.services["edgedb_client"].query('''
DELETE Chat
FILTER .id = <uuid>$chat_id;
''', chat_id=st.session_state.chat.id)
st.session_state.chat = self._create_default_chat()
st.session_state.is_feedback_active = False # Desativando o feedback
def send_message_for_ai(self, prompt):
with st.spinner("Obtendo conteúdo da página..."):
embedding = st.session_state.services["oa_client"].embeddings.create(
input=[prompt],
model=os.environ.get("OPENAI_MODEL_EMBEDDING")
).data[0].embedding
child_texts = st.session_state.services["qdrant_client"].search(
collection_name=os.environ.get("COLLECTION_NAME"),
query_vector=embedding,
limit=3
)
contexts = []
for child_text in child_texts:
parent_text = st.session_state.services["edgedb_client"].query('''
SELECT Pattern {
content,
url,
parent_id
}
FILTER .id = <uuid>$parent_id
''', parent_id=child_text.payload["parent_id"])[0]
context = {
"content": parent_text.content,
"url": parent_text.url,
"parent_id": parent_text.parent_id
}
contexts.append(context)
formatted_messages = [{"content": msg.content, "role": msg.role} for msg in st.session_state.chat_history]
self._save_msg_to_db(prompt, "user")
stream_response = send_message(
st.session_state.services["oa_client"],
contexts,
prompt,
formatted_messages
)
return stream_response
def generate_answer(self, prompt):
with st.chat_message("assistant"):
stream_response = self.send_message_for_ai(prompt)
response = st.write_stream(stream_response)
self._save_msg_to_db(response, "assistant")
self.update_messages(st.session_state.chat)
def display_chat(self):
for message in st.session_state.chat_history:
st.chat_message(message.role).write(message.content)
def update_messages(self, chat):
messages = st.session_state.services["edgedb_client"].query('''
SELECT Message {
id,
content,
role
}
FILTER .chat.id = <uuid>$chat_id
ORDER BY .created_at ASC;
''', chat_id=chat.id)
st.session_state.chat_history = messages
def display_feedback(self):
user_input = st.session_state.chat_history[-2].content
bot_output = st.session_state.chat_history[-1].content
with st.expander("Avaliação do atendimento"):
st.write(f'O que achou da resposta para a pergunta "{user_input}"?')
rate = st.feedback("stars")
# rate = st.feedback("faces")
text_feedback = st.text_input("Comentários extras:")
# Botão para confirmar a avaliação
if rate is not None:
if st.button("Enviar Avaliação"):
try:
feedback_rate = rate + 1
st.session_state.services["edgedb_client"].query('''
INSERT Feedback {
rating := <int16>$rating,
content := <str>$content,
message := (SELECT Message FILTER .id = <uuid>$message_id),
prototipo := (SELECT Prototipo FILTER .id = <uuid>$prototipo_id)
}
''',
message_id=st.session_state.chat_history[-1].id,
rating=feedback_rate,
content=text_feedback,
prototipo_id=st.session_state.prototipo_id
)
st.session_state.chat_history
st.success(f"Avaliação enviada!")
except Exception as e:
print(e)
st.error("Erro ao enviar avaliação!")
st.session_state.is_feedback_active = False # Desativando o feedback
# TODO Colocar nessa parte a estrutura para adicionar o feedback_data ao banco de dados
|