Spaces:
Runtime error
Runtime error
import os | |
import shutil | |
import subprocess | |
import signal | |
import hashlib | |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
import gradio as gr | |
from huggingface_hub import create_repo, HfApi | |
from huggingface_hub import snapshot_download | |
from huggingface_hub import whoami | |
from huggingface_hub import ModelCard | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from textwrap import dedent | |
HOME = os.environ.get("HOME") | |
token = os.environ.get("HF_TOKEN") | |
library_username = os.environ.get("OLLAMA_USERNAME").lower() | |
ollama_pubkey = None | |
ollama_model_name = None | |
download_gguf_link = None | |
# model.num_parameters() | |
def regenerate_pubkey(pubkey, oauth_token: gr.OAuthToken | None): | |
if oauth_token.token is None: | |
raise ValueError("You must be logged in to use Ollamafy") | |
hash_oauth = hashlib.sha256(b"{oauth_token.token}").hexdigest() | |
generate_ollama_host_file = f"echo $(ss -natp | grep (cat ollama.pid) | awk '{{print $4}}') > ollama.host" | |
generate_ollama_pid_file = f"echo $! > ollama.pid" | |
ollama_pubkey = f"cat {HOME}/{hash_oauth}/.ollama/id_ed25519.pub" | |
ollama_start = f"HOME={HOME}/{hash_oauth} ollama serve & {generate_ollama_pid_file} & sleep 5" | |
ollama_pid = f"cat {HOME}/{hash_oauth}/ollama.pid" | |
ollama_stop = f"kill -9 {ollama_pid}" | |
delete_home = f"rm -Rf {HOME}/{hash_oauth}/.ollama" | |
try: | |
result = subprocess.run(ollama_pid, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error retrieving Ollama PID {result.stderr}") | |
print(f"Ollama PID Retrived: {ollama_pid}") | |
result = subprocess.run(ollama_stop, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error stoppping Ollama {result.stderr}") | |
print("Ollama stopped successfully!") | |
result = subprocess.run(delete_home, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error removing Ollama HOME folder {result.stderr}") | |
print("Ollama HOME folder removed successfully!") | |
result = subprocess.run(ollama_start, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error starting Ollama {result.stderr}") | |
print("Ollama started successfully!") | |
result = subprocess.run(ollama_pubkey, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error starting Ollama {result.stderr}") | |
print(f"echo $(ss -natp | grep (cat ollama.pid) | awk '{{print $4}}')") | |
print("Ollama Pubkey Obtained!") | |
result = subprocess.run(generate_ollama_host_file, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error generating Ollama Host File {result.stderr}") | |
print("Ollama Host File Created!") | |
except Exception as e: | |
return (f"Error: {e}", "error.png") | |
finally: | |
# shutil.rmtree(model_name, ignore_errors=True) | |
print("Ollama Pubkey Generated! Copy to your user profile in the Ollama Library.") | |
def ollamafy_model(login, model_id, ollama_library_username , ollama_q_method, latest, download_gguf_link, maintainer, oauth_token: gr.OAuthToken | None, ollama_model_name): | |
ollama_library_username: library_username | None | |
if oauth_token.token is None: | |
raise ValueError("You must be logged in to use Ollamafy") | |
hash_oauth = hashlib.sha256(b"{oauth_token.token}").hexdigest() | |
# username = whoami(oauth_token.token)["name"] | |
model_name = model_id.split('/')[-1] | |
fp16 = f"{model_name}-fp16.gguf" | |
ollama_pid = f"cat {HOME}/{hash_oauth}/ollama.pid" | |
ollama_stop = f"kill -9 {ollama_pid}" | |
delete_home = f"rm -Rf {HOME}/{hash_oauth}/.ollama" | |
download_gguf = f"wget download_gguf_link" | |
try: | |
api = HfApi(token=oauth_token.token) | |
dl_pattern = ["*.md", "*.json", "*.model"] | |
pattern = ( | |
"*.safetensors" | |
if any( | |
file.path.endswith(".safetensors") | |
for file in api.list_repo_tree( | |
repo_id=model_id, | |
recursive=True, | |
) | |
) | |
else "*.bin" | |
) | |
dl_pattern += pattern | |
if not os.path.isfile(fp16) and download_gguf_link is None: | |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern) | |
print("Model downloaded successfully!") | |
print(f"Current working directory: {os.getcwd()}") | |
print(f"Model directory contents: {os.listdir(model_name)}") | |
conversion_script = "convert_hf_to_gguf.py" | |
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}" | |
result = subprocess.run(fp16_conversion, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error converting to fp16: {result.stderr}") | |
print("Model converted to fp16 successfully!") | |
print(f"Converted model path: {fp16}") | |
HfApi().delete_repo(repo_id=model_id) | |
else: | |
if urlparse.urlparse(download_gguf_link).scheme and download_gguf_link.file.path.endswith("*.gguf"): | |
result = subprocess.run(download_gguf, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error downloading GGUF: {result.stderr}") | |
print("Downloaded GGUF") | |
else: | |
print("Invalid GGUF Download Link") | |
### Ollamafy ### | |
model_maintainer = model_id.split('/')[-2] | |
if ollama_model_name is None: | |
ollama_model_name = model_maintainer.lower() + '_' + model_name.lower() | |
ollama_modelfile_name = model_name + '_modelfile' | |
model_path = f"{HOME}/.cache/huggingface/hub/{model_id}" | |
ollama_modelfile = open(ollama_modelfile_name, "w") | |
ollama_modelfile_path = quantized_gguf_path | |
ollama_modelfile.write(quantized_gguf_path) | |
ollama_modelfile.close() | |
print(quantized_gguf_path) | |
if ollama_q_method == "FP16": | |
ollama_conversion = f"ollama create -f {model_file} {library_username}/{ollama_model_name}:{ollama_q_method.lower()}" | |
else: | |
ollama_conversion = f"ollama create -q {ollama_q_method} -f {model_file} {library_username}/{ollama_model_name}:{ollama_q_method.lower()}" | |
ollama_conversion_result = subprocess.run(ollama_conversion, shell=True, capture_output=True) | |
print(ollama_conversion_result) | |
if ollama_conversion_result.returncode != 0: | |
raise Exception(f"Error converting to Ollama: {ollama_conversion_result.stderr}") | |
else: | |
print("Model converted to Ollama successfully!") | |
if maintainer: | |
ollama_push = f"OLLAMA_HOST={ollama_host} ollama {library_username}/{model_name}:{q_method.lower()}" | |
ollama_rm = f"ollama rm {library_username}/{model_name}:{q_method.lower()}" | |
else: | |
ollama_push = f"OLLAMA_HOST={ollama_host} ollama push {library_username}/{ollama_model_name}:{q_method.lower()}" | |
ollama_rm = f"ollama rm {library_username}/{ollama_model_name}:{q_method.lower()}" | |
ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True) | |
print(ollama_push_result) | |
if ollama_push_result.returncode != 0: | |
raise Exception(f"Error pushing to Ollama: {ollama_push_result.stderr}") | |
else: | |
print("Model pushed to Ollama library successfully!") | |
ollama_rm_result = subprocess.run(ollama_rm, shell=True, capture_output=True) | |
print(ollama_rm_result) | |
if ollama_rm_result.returncode != 0: | |
raise Exception(f"Error removing to Ollama: {ollama_rm_result.stderr}") | |
else: | |
print("Model pushed to Ollama library successfully!") | |
if latest: | |
ollama_copy = f"ollama cp {library_username}/{model_id.lower()}:{q_method.lower()} {library_username}/{model_id.lower()}:latest" | |
ollama_copy_result = subprocess.run(ollama_copy, shell=True, capture_output=True) | |
print(ollama_copy_result) | |
if ollama_copy_result.returncode != 0: | |
raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}") | |
print("Model pushed to Ollama library successfully!") | |
if maintainer: | |
ollama_push_latest = f"OLLAMA_HOST={ollama_host} ollama push {library_username}/{model_name}:latest" | |
ollama_rm_latest = f"ollama rm {library_username}/{model_name}:latest" | |
else: | |
ollama_push_latest = f"OLLAMA_HOST={ollama_host} ollama push {library_username}/{ollama_model_name}:latest" | |
ollama_rm_latest = f"ollama rm {library_username}/{ollama_model_name}:latest" | |
ollama_push_latest_result = subprocess.run(ollama_push_latest, shell=True, capture_output=True) | |
print(ollama_push_latest_result) | |
if ollama_push_latest_result.returncode != 0: | |
raise Exception(f"Error pushing to Ollama: {ollama_push_result.stderr}") | |
else: | |
print("Model pushed to Ollama library successfully!") | |
ollama_rm_latest_result = subprocess.run(ollama_rm_latest, shell=True, capture_output=True) | |
print(ollama_rm_latest_result) | |
if ollama_rm_latest_result.returncode != 0: | |
raise Exception(f"Error pushing to Ollama: {ollama_rm_latest.stderr}") | |
else: | |
print("Model pushed to Ollama library successfully!") | |
except Exception as e: | |
return (f"Error: {e}", "error.png") | |
finally: | |
shutil.rmtree(model_name, ignore_errors=True) | |
print("Folder cleaned up successfully!") | |
result = subprocess.run(ollama_pid, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error retrieving Ollama PID {result.stderr}") | |
print(f"Ollama PID Retrived: {ollama_pid}") | |
result = subprocess.run(ollama_stop, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error stoppping Ollama {result.stderr}") | |
print("Ollama stopped successfully!") | |
result = subprocess.run(delete_home, shell=True, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error removing Ollama HOME folder {result.stderr}") | |
print("Ollama HOME fodler removed successfully!") | |
css="""/* Custom CSS to allow scrolling */ | |
.gradio-container {overflow-y: auto;} | |
""" | |
# Create Gradio interface | |
with gr.Blocks(css=css) as demo: | |
login = gr.LoginButton( | |
min_width=250, | |
) | |
generate_pubkey = gr.Button ( | |
value="Generate Pubkey", | |
min_width=250, | |
) | |
model_id = HuggingfaceHubSearch( | |
label="Hugging Face Hub Model ID", | |
placeholder="Search for model id on Huggingface", | |
search_type="model", | |
) | |
download_gguf_link = gr.Textbox( | |
label="Download Link", | |
info="If you have access to the GGUF, you can insert the downlaod link here.", | |
) | |
ollama_q_method = gr.Dropdown( | |
["FP16", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_1", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_1", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], | |
label="Ollama Quantization Method", | |
info="Chose which quantization will created and exported to the Ollama Library.", | |
value="FP16" | |
) | |
pubkey = gr.Code ( | |
ollama_pubkey, | |
label="Copy this and paste this into your Ollama profile.", | |
) | |
ollama_model_name = gr.Textbox( | |
label="Ollama Model Name", | |
info="Input a Custom Model Name.", | |
) | |
ollama_library_username = gr.Textbox( | |
label="Ollama Library Username", | |
info="Input your username from Ollama to Push this model to their Library.", | |
) | |
latest = gr.Checkbox( | |
value=False, | |
label="Latest", | |
info="Push Model to the Ollama Library with the :latest tag." | |
) | |
maintainer = gr.Checkbox( | |
value=False, | |
label="Maintainer", | |
info="Use this option is your original repository on both Hugging Face and Ollama." | |
) | |
generate_pubkey.click( | |
fn=regenerate_pubkey, | |
inputs=[ | |
generate_pubkey | |
], | |
outputs=[ | |
pubkey, | |
], | |
) | |
iface = gr.Interface( | |
fn=ollamafy_model, | |
# additional_inputs=[ | |
# generate_pubkey, | |
# ], | |
inputs=[ | |
login, | |
generate_pubkey, | |
model_id, | |
ollama_model_name, | |
download_gguf_link, | |
ollama_library_username, | |
ollama_q_method, | |
latest, | |
maintainer, | |
], | |
outputs=[ | |
gr.Markdown(label="output"), | |
gr.Image(show_label=False), | |
], | |
title="Ollamafy", | |
description="Import Hugging Face Models to Ollama and Push them to the Ollama Library 🦙 \n\n Sampled from: \n\n - https://huggingface.co/spaces/ggml-org/gguf-my-repo \n\n - https://huggingface.co/spaces/gingdev/ollama-server", | |
api_name=False | |
) | |
def restart_space(): | |
HfApi().restart_space(repo_id="unclemusclez/ollamafy", token=HF_TOKEN, library_username=OLLAMA_USERNAME, factory_reboot=True) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=21600) | |
scheduler.start() | |
# Launch the interface | |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |