ollamafy / app.py
unclemusclez's picture
ollama_pid
ee892c2 verified
import os
import shutil
import subprocess
import signal
import hashlib
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
HOME = os.environ.get("HOME")
token = os.environ.get("HF_TOKEN")
library_username = os.environ.get("OLLAMA_USERNAME").lower()
ollama_pubkey = None
ollama_model_name = None
download_gguf_link = None
# model.num_parameters()
def regenerate_pubkey(pubkey, oauth_token: gr.OAuthToken | None):
if oauth_token.token is None:
raise ValueError("You must be logged in to use Ollamafy")
hash_oauth = hashlib.sha256(b"{oauth_token.token}").hexdigest()
generate_ollama_host_file = f"echo $(ss -natp | grep (cat ollama.pid) | awk '{{print $4}}') > ollama.host"
generate_ollama_pid_file = f"echo $! > ollama.pid"
ollama_pubkey = f"cat {HOME}/{hash_oauth}/.ollama/id_ed25519.pub"
ollama_start = f"HOME={HOME}/{hash_oauth} ollama serve & {generate_ollama_pid_file} & sleep 5"
ollama_pid = f"cat {HOME}/{hash_oauth}/ollama.pid"
ollama_stop = f"kill -9 {ollama_pid}"
delete_home = f"rm -Rf {HOME}/{hash_oauth}/.ollama"
try:
result = subprocess.run(ollama_pid, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error retrieving Ollama PID {result.stderr}")
print(f"Ollama PID Retrived: {ollama_pid}")
result = subprocess.run(ollama_stop, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error stoppping Ollama {result.stderr}")
print("Ollama stopped successfully!")
result = subprocess.run(delete_home, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error removing Ollama HOME folder {result.stderr}")
print("Ollama HOME folder removed successfully!")
result = subprocess.run(ollama_start, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error starting Ollama {result.stderr}")
print("Ollama started successfully!")
result = subprocess.run(ollama_pubkey, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error starting Ollama {result.stderr}")
print(f"echo $(ss -natp | grep (cat ollama.pid) | awk '{{print $4}}')")
print("Ollama Pubkey Obtained!")
result = subprocess.run(generate_ollama_host_file, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error generating Ollama Host File {result.stderr}")
print("Ollama Host File Created!")
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
# shutil.rmtree(model_name, ignore_errors=True)
print("Ollama Pubkey Generated! Copy to your user profile in the Ollama Library.")
def ollamafy_model(login, model_id, ollama_library_username , ollama_q_method, latest, download_gguf_link, maintainer, oauth_token: gr.OAuthToken | None, ollama_model_name):
ollama_library_username: library_username | None
if oauth_token.token is None:
raise ValueError("You must be logged in to use Ollamafy")
hash_oauth = hashlib.sha256(b"{oauth_token.token}").hexdigest()
# username = whoami(oauth_token.token)["name"]
model_name = model_id.split('/')[-1]
fp16 = f"{model_name}-fp16.gguf"
ollama_pid = f"cat {HOME}/{hash_oauth}/ollama.pid"
ollama_stop = f"kill -9 {ollama_pid}"
delete_home = f"rm -Rf {HOME}/{hash_oauth}/.ollama"
download_gguf = f"wget download_gguf_link"
try:
api = HfApi(token=oauth_token.token)
dl_pattern = ["*.md", "*.json", "*.model"]
pattern = (
"*.safetensors"
if any(
file.path.endswith(".safetensors")
for file in api.list_repo_tree(
repo_id=model_id,
recursive=True,
)
)
else "*.bin"
)
dl_pattern += pattern
if not os.path.isfile(fp16) and download_gguf_link is None:
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
print("Model downloaded successfully!")
print(f"Current working directory: {os.getcwd()}")
print(f"Model directory contents: {os.listdir(model_name)}")
conversion_script = "convert_hf_to_gguf.py"
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error converting to fp16: {result.stderr}")
print("Model converted to fp16 successfully!")
print(f"Converted model path: {fp16}")
HfApi().delete_repo(repo_id=model_id)
else:
if urlparse.urlparse(download_gguf_link).scheme and download_gguf_link.file.path.endswith("*.gguf"):
result = subprocess.run(download_gguf, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error downloading GGUF: {result.stderr}")
print("Downloaded GGUF")
else:
print("Invalid GGUF Download Link")
### Ollamafy ###
model_maintainer = model_id.split('/')[-2]
if ollama_model_name is None:
ollama_model_name = model_maintainer.lower() + '_' + model_name.lower()
ollama_modelfile_name = model_name + '_modelfile'
model_path = f"{HOME}/.cache/huggingface/hub/{model_id}"
ollama_modelfile = open(ollama_modelfile_name, "w")
ollama_modelfile_path = quantized_gguf_path
ollama_modelfile.write(quantized_gguf_path)
ollama_modelfile.close()
print(quantized_gguf_path)
if ollama_q_method == "FP16":
ollama_conversion = f"ollama create -f {model_file} {library_username}/{ollama_model_name}:{ollama_q_method.lower()}"
else:
ollama_conversion = f"ollama create -q {ollama_q_method} -f {model_file} {library_username}/{ollama_model_name}:{ollama_q_method.lower()}"
ollama_conversion_result = subprocess.run(ollama_conversion, shell=True, capture_output=True)
print(ollama_conversion_result)
if ollama_conversion_result.returncode != 0:
raise Exception(f"Error converting to Ollama: {ollama_conversion_result.stderr}")
else:
print("Model converted to Ollama successfully!")
if maintainer:
ollama_push = f"OLLAMA_HOST={ollama_host} ollama {library_username}/{model_name}:{q_method.lower()}"
ollama_rm = f"ollama rm {library_username}/{model_name}:{q_method.lower()}"
else:
ollama_push = f"OLLAMA_HOST={ollama_host} ollama push {library_username}/{ollama_model_name}:{q_method.lower()}"
ollama_rm = f"ollama rm {library_username}/{ollama_model_name}:{q_method.lower()}"
ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True)
print(ollama_push_result)
if ollama_push_result.returncode != 0:
raise Exception(f"Error pushing to Ollama: {ollama_push_result.stderr}")
else:
print("Model pushed to Ollama library successfully!")
ollama_rm_result = subprocess.run(ollama_rm, shell=True, capture_output=True)
print(ollama_rm_result)
if ollama_rm_result.returncode != 0:
raise Exception(f"Error removing to Ollama: {ollama_rm_result.stderr}")
else:
print("Model pushed to Ollama library successfully!")
if latest:
ollama_copy = f"ollama cp {library_username}/{model_id.lower()}:{q_method.lower()} {library_username}/{model_id.lower()}:latest"
ollama_copy_result = subprocess.run(ollama_copy, shell=True, capture_output=True)
print(ollama_copy_result)
if ollama_copy_result.returncode != 0:
raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
print("Model pushed to Ollama library successfully!")
if maintainer:
ollama_push_latest = f"OLLAMA_HOST={ollama_host} ollama push {library_username}/{model_name}:latest"
ollama_rm_latest = f"ollama rm {library_username}/{model_name}:latest"
else:
ollama_push_latest = f"OLLAMA_HOST={ollama_host} ollama push {library_username}/{ollama_model_name}:latest"
ollama_rm_latest = f"ollama rm {library_username}/{ollama_model_name}:latest"
ollama_push_latest_result = subprocess.run(ollama_push_latest, shell=True, capture_output=True)
print(ollama_push_latest_result)
if ollama_push_latest_result.returncode != 0:
raise Exception(f"Error pushing to Ollama: {ollama_push_result.stderr}")
else:
print("Model pushed to Ollama library successfully!")
ollama_rm_latest_result = subprocess.run(ollama_rm_latest, shell=True, capture_output=True)
print(ollama_rm_latest_result)
if ollama_rm_latest_result.returncode != 0:
raise Exception(f"Error pushing to Ollama: {ollama_rm_latest.stderr}")
else:
print("Model pushed to Ollama library successfully!")
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
shutil.rmtree(model_name, ignore_errors=True)
print("Folder cleaned up successfully!")
result = subprocess.run(ollama_pid, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error retrieving Ollama PID {result.stderr}")
print(f"Ollama PID Retrived: {ollama_pid}")
result = subprocess.run(ollama_stop, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error stoppping Ollama {result.stderr}")
print("Ollama stopped successfully!")
result = subprocess.run(delete_home, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error removing Ollama HOME folder {result.stderr}")
print("Ollama HOME fodler removed successfully!")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
login = gr.LoginButton(
min_width=250,
)
generate_pubkey = gr.Button (
value="Generate Pubkey",
min_width=250,
)
model_id = HuggingfaceHubSearch(
label="Hugging Face Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
download_gguf_link = gr.Textbox(
label="Download Link",
info="If you have access to the GGUF, you can insert the downlaod link here.",
)
ollama_q_method = gr.Dropdown(
["FP16", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_1", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_1", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
label="Ollama Quantization Method",
info="Chose which quantization will created and exported to the Ollama Library.",
value="FP16"
)
pubkey = gr.Code (
ollama_pubkey,
label="Copy this and paste this into your Ollama profile.",
)
ollama_model_name = gr.Textbox(
label="Ollama Model Name",
info="Input a Custom Model Name.",
)
ollama_library_username = gr.Textbox(
label="Ollama Library Username",
info="Input your username from Ollama to Push this model to their Library.",
)
latest = gr.Checkbox(
value=False,
label="Latest",
info="Push Model to the Ollama Library with the :latest tag."
)
maintainer = gr.Checkbox(
value=False,
label="Maintainer",
info="Use this option is your original repository on both Hugging Face and Ollama."
)
generate_pubkey.click(
fn=regenerate_pubkey,
inputs=[
generate_pubkey
],
outputs=[
pubkey,
],
)
iface = gr.Interface(
fn=ollamafy_model,
# additional_inputs=[
# generate_pubkey,
# ],
inputs=[
login,
generate_pubkey,
model_id,
ollama_model_name,
download_gguf_link,
ollama_library_username,
ollama_q_method,
latest,
maintainer,
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Ollamafy",
description="Import Hugging Face Models to Ollama and Push them to the Ollama Library 🦙 \n\n Sampled from: \n\n - https://huggingface.co/spaces/ggml-org/gguf-my-repo \n\n - https://huggingface.co/spaces/gingdev/ollama-server",
api_name=False
)
def restart_space():
HfApi().restart_space(repo_id="unclemusclez/ollamafy", token=HF_TOKEN, library_username=OLLAMA_USERNAME, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)