Spaces:
Running
Running
File size: 10,483 Bytes
bc3753a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import random
import gradio as gr
from src.cost_time import calculate_time
from configs import *
os.environ["GRADIO_TEMP_DIR"]= './temp'
description = """<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px;">Linly 智能对话系统 (Linly-Talker)</span>
<br>
<span style="font-size: 18px;" id="paper-info">
[<a href="https://zhuanlan.zhihu.com/p/671006998" target="_blank">知乎</a>]
[<a href="https://www.bilibili.com/video/BV1rN4y1a76x/" target="_blank">bilibili</a>]
[<a href="https://github.com/Kedreamix/Linly-Talker" target="_blank">GitHub</a>]
[<a herf="https://kedreamix.github.io/" target="_blank">个人主页</a>]
</span>
<br>
<span>Linly-Talker 是一款智能 AI 对话系统,结合了大型语言模型 (LLMs) 与视觉模型,是一种新颖的人工智能交互方式。</span>
</p>
"""
# 设定默认参数值,可修改
# source_image = r'example.png'
blink_every = True
size_of_image = 256
preprocess_type = 'crop'
facerender = 'facevid2vid'
enhancer = False
is_still_mode = False
exp_weight = 1
use_ref_video = False
ref_video = None
ref_info = 'pose'
use_idle_mode = False
length_of_audio = 5
@calculate_time
def TTS_response(text,
voice, rate, volume, pitch,
am, voc, lang, male,
tts_method = 'PaddleTTS', save_path = 'answer.wav'):
print(text, voice, rate, volume, pitch, am, voc, lang, male, tts_method, save_path)
if tts_method == 'Edge-TTS':
try:
edgetts.predict(text, voice, rate, volume, pitch , 'answer.wav', 'answer.vtt')
except:
os.system(f'edge-tts --text "{text}" --voice {voice} --write-media answer.wav')
return 'answer.wav'
elif tts_method == 'PaddleTTS':
paddletts.predict(text, am, voc, lang = lang, male=male, save_path = save_path)
return save_path
@calculate_time
def Talker_response(source_image, source_video, method = 'SadTalker', driven_audio = '', batch_size = 2):
# print(source_image, method , driven_audio, batch_size)
if source_video:
source_image = source_video
print(source_image, method , driven_audio, batch_size)
pose_style = random.randint(0, 45)
if method == 'SadTalker':
video = sadtalker.test2(source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
use_ref_video,
ref_video,
ref_info,
use_idle_mode,
length_of_audio,
blink_every,
fps=20)
elif method == 'Wav2Lip':
video = wav2lip.predict(source_image, driven_audio, batch_size)
elif method == 'ER-NeRF':
video = ernerf.predict(driven_audio)
else:
gr.Warning("不支持的方法:" + method)
return None
return video
def main():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(description)
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.Tab("图片人物"):
source_image = gr.Image(label='Source image', type = 'filepath')
with gr.Tab("视频人物"):
source_video = gr.Video(label="Source video")
with gr.Tabs():
input_audio = gr.Audio(sources=['upload', 'microphone'], type="filepath", label = '语音')
input_text = gr.Textbox(label="Input Text", lines=3)
with gr.Column():
tts_method = gr.Radio(["Edge-TTS", "PaddleTTS"], label="Text To Speech Method (Edge-TTS利用微软的TTS,PaddleSpeech是离线的TTS,不过第一次运行会自动下载模型)",
value = 'Edge-TTS')
with gr.Tabs("TTS Method"):
# with gr.Accordion("Advanced Settings(高级设置语音参数) ", open=False):
with gr.Tab("Edge-TTS"):
voice = gr.Dropdown(edgetts.SUPPORTED_VOICE,
value='zh-CN-XiaoxiaoNeural',
label="Voice")
rate = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1.0,
label='Rate')
volume = gr.Slider(minimum=0,
maximum=100,
value=100,
step=1,
label='Volume')
pitch = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1,
label='Pitch')
with gr.Tab("PaddleTTS"):
am = gr.Dropdown(["FastSpeech2"], label="声学模型选择", value = 'FastSpeech2')
voc = gr.Dropdown(["PWGan", "HifiGan"], label="声码器选择", value = 'PWGan')
lang = gr.Dropdown(["zh", "en", "mix", "canton"], label="语言选择", value = 'zh')
male = gr.Checkbox(label="男声(Male)", value=False)
with gr.Column(variant='panel'):
batch_size = gr.Slider(minimum=1,
maximum=10,
value=2,
step=1,
label='Talker Batch size')
button_text = gr.Button('语音生成')
button_text.click(fn=TTS_response,inputs=[input_text, voice, rate, volume, pitch, am, voc, lang, male, tts_method],
outputs=[input_audio])
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('数字人问答'):
method = gr.Radio(choices = ['SadTalker', 'Wav2Lip', 'ER-NeRF'], value = 'SadTalker', label = '模型选择')
gen_video = gr.Video(label="Generated video", format="mp4", scale=1, autoplay=True)
video_button = gr.Button("提交", variant='primary')
video_button.click(fn=Talker_response,inputs=[source_image, source_video, method, input_audio, batch_size] ,
outputs=[gen_video])
with gr.Row():
examples = [
[
'examples/source_image/full_body_2.png',
'应对压力最有效的方法是什么?',
],
[
'examples/source_image/full_body_1.png',
'如何进行时间管理?',
],
[
'examples/source_image/full3.png',
'为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?',
],
[
'examples/source_image/full4.jpeg',
'近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?',
],
[
'examples/source_image/art_13.png',
'三年级同学种树80颗,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树多少棵?',
],
[
'examples/source_image/art_5.png',
'撰写一篇交响乐音乐会评论,讨论乐团的表演和观众的整体体验。',
],
]
gr.Examples(examples=examples,
inputs=[
source_image,
input_text,
],
)
return inference
if __name__ == "__main__":
try:
from TFG import SadTalker
sadtalker = SadTalker(lazy_load=True)
except Exception as e:
print("SadTalker Error: ", e)
print("如果使用SadTalker,请先下载SadTalker模型")
try:
from TFG import Wav2Lip
wav2lip = Wav2Lip("checkpoints/wav2lip_gan.pth")
except Exception as e:
print("Wav2Lip Error: ", e)
print("如果使用Wav2Lip,请先下载Wav2Lip模型")
try:
from TFG import ERNeRF
ernerf = ERNeRF()
ernerf.init_model('checkpoints/Obama_ave.pth', 'checkpoints/Obama.json')
except Exception as e:
print("ERNeRF Error: ", e)
print("如果使用ERNeRF,请先下载ERNeRF模型")
try:
from TTS import EdgeTTS
edgetts = EdgeTTS()
except Exception as e:
print("EdgeTTS Error: ", e)
print("如果使用EdgeTTS,请先下载EdgeTTS模型")
try:
from TTS import PaddleTTS
paddletts = PaddleTTS()
except Exception as e:
print("PaddleTTS Error: ", e)
print("如果使用PaddleTTS,请先下载PaddleTTS模型")
gr.close_all()
demo = main()
demo.queue()
# demo.launch()
demo.launch(server_name=ip, # 本地端口localhost:127.0.0.1 全局端口转发:"0.0.0.0"
server_port=port,
# 似乎在Gradio4.0以上版本可以不使用证书也可以进行麦克风对话
ssl_certfile=ssl_certfile,
ssl_keyfile=ssl_keyfile,
ssl_verify=False,
debug=True) |