car-data / app.py
unixpickle's picture
provide cropped input as an output
161157e
import io
import gradio as gr
import requests
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
from constants import MAKES_MODELS, PRICE_BIN_LABELS, YEARS
print("downloading checkpoint...")
data = requests.get(
"https://data.aqnichol.com/car-data/models/mobilenetv2_432000_calib_torchscript.pt",
stream=True,
).content
print("creating model...")
model = torch.jit.load(io.BytesIO(data))
model.eval()
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
]
)
print("done.")
def classify(img: Image.Image):
in_tensor = transform(img)[None]
outputs = model(in_tensor)
price_bins = dict(
zip(PRICE_BIN_LABELS, F.softmax(outputs["price_bin"], dim=-1)[0].tolist())
)
years = dict(
zip(
[str(year) for year in YEARS] + ["Unknown"],
F.softmax(outputs["year"], dim=-1)[0].tolist(),
)
)
make_models = dict(
zip(
([f"{make} {model}" for make, model in MAKES_MODELS] + ["Unknown"]),
F.softmax(outputs["make_model"], dim=-1)[0].tolist(),
)
)
return (
f"${int(round(outputs['price_median'].item()))}",
price_bins,
years,
make_models,
img,
)
iface = gr.Interface(
fn=classify,
inputs=gr.Image(shape=(224, 224), type="pil"),
outputs=[
gr.Text(label="Price Prediction"),
gr.Label(label="Price Bin", num_top_classes=5),
gr.Label(label="Year", num_top_classes=5),
gr.Label(label="Make/Model", num_top_classes=10),
gr.Image(label="Cropped Input"),
],
)
iface.queue(concurrency_count=2).launch()