MrVicente commited on
Commit
8e5bb9e
1 Parent(s): c635754

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import (
3
+ BartForConditionalGeneration,
4
+ BartTokenizer
5
+ )
6
+
7
+ model_name = 'unlisboa/bart_qa_assistant'
8
+ tokenizer = BartTokenizer.from_pretrained(model_name)
9
+ device = get_device()
10
+ model = BartForConditionalGeneration.from_pretrained(model_name).to(device)
11
+ model.eval()
12
+
13
+ def example(question, censor):
14
+ print(question, censor)
15
+ return question + str(censor)
16
+
17
+ examples = [["What's the meaning of life?", True]]
18
+
19
+ checkbox = gr.Checkbox(value=True, label="should censor output")
20
+ question_input = gr.Textbox(lines=2, label='Question:')
21
+
22
+ model_input = tokenizer(question_input, truncation=True, padding=True, return_tensors="pt")
23
+ generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device),
24
+ attention_mask=model_input["attention_mask"].to(device),
25
+ #bad_words_ids=bad_words_ids,
26
+ force_words_ids=None,
27
+ min_length=1,
28
+ max_length=100,
29
+ do_sample=True,
30
+ early_stopping=True,
31
+ num_beams=4,
32
+ temperature=1.0,
33
+ top_k=None,
34
+ top_p=None,
35
+ # eos_token_id=tokenizer.eos_token_id,
36
+ no_repeat_ngram_size=2,
37
+ num_return_sequences=1,
38
+ return_dict_in_generate=True,
39
+ output_scores=True)
40
+
41
+ response = tokenizer.batch_decode(generated_answers_encoded['sequences'], skip_special_tokens=True,
42
+ clean_up_tokenization_spaces=True)[0]
43
+
44
+ answer_output = gr.Textbox(lines=2, label='Answer:')
45
+ gr.Interface(fn=example, inputs=[question_input, checkbox], outputs=[answer_output], allow_flagging="never", examples=examples).launch()