Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import evaluate | |
import datasets | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed calculate kendall's tau distance between predictions and references. | |
It is also known as bubble sort distance. | |
It is equivalent to number of adjacent swaps required to convert predictions to references. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, usoing kendall's tau distance. | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string or tokens or int. The predictions should be unique. | |
references: list of reference for each prediction. Each reference | |
should be a string or tokens or int. The values in predictions and references should be the same. | |
Returns: | |
kendall_tau_distance: Kendell's tau distance between predictions and references | |
normalized_kendall_tau_distance: Kendell's tau distance between predictions and references normalized by the number of pairs | |
Exceptions: | |
AssertionError: If the predictions are not unique or if the values in predictions and references are not the same | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> kendall_tau_distance = evaluate.load("kendall_tau_distance") | |
>>> results = kendall_tau_distance.compute(references=[0, 1], predictions=[1, 0]) | |
>>> print(results) | |
{'kendall_tau_distance': 1.0, 'normalized_kendall_tau_distance': 1.0} | |
""" | |
class kendalltaudistance(evaluate.Metric): | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Value("int64"), | |
"references": datasets.Value("int64"), | |
} | |
) | |
) | |
def _compute(self, predictions, references): | |
"""Returns the scores""" | |
# TODO: Compute the different scores of the module | |
n = len(predictions) | |
assert len(set(predictions)) == n, "The predictions should be unique" | |
assert set(predictions) == set( | |
references | |
), "The values in predictions and references should be the same" | |
n_discordant_pairs = 0 | |
for i in range(len(predictions)): | |
j = references.index(predictions[i]) | |
n_discordant_pairs += len( | |
set(predictions[:i]).intersection(set(references[j:])) | |
) + len(set(predictions[i + 1 :]).intersection(set(references[:j]))) | |
n_discordant_pairs = n_discordant_pairs / 2 | |
num_pairs = n * (n - 1) / 2 | |
return { | |
"kendall_tau_distance": n_discordant_pairs, | |
"normalized_kendall_tau_distance": n_discordant_pairs / num_pairs, | |
} | |