Spaces:
Runtime error
Runtime error
File size: 28,683 Bytes
2956799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
# -*- coding: utf-8 -*-
"""
Author: Philipp Seidl
ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning
Johannes Kepler University Linz
Contact: [email protected]
Model related functionality
"""
from .utils import top_k_accuracy
from .plotutils import plot_loss, plot_topk, plot_nte
from .molutils import convert_smiles_to_fp
import os
import numpy as np
import torch
import torch.nn as nn
from collections import defaultdict
from scipy import sparse
import logging
from tqdm import tqdm
import wandb
log = logging.getLogger(__name__)
class ChemRXNDataset(torch.utils.data.Dataset):
"Torch Dataset for ChemRXN containing Xs: the input as np array, target: the target molecules (or nothing), and ys: the label"
def __init__(self, Xs, target, ys, is_smiles=False, fp_size=2048, fingerprint_type='morgan'):
self.is_smiles=is_smiles
if is_smiles:
self.Xs = Xs
self.target = target
self.fp_size = fp_size
self.fingerprint_type = fingerprint_type
else:
self.Xs = Xs.astype(np.float32)
self.target = target.astype(np.float32)
self.ys = ys
self.ys_is_sparse = isinstance(self.ys, sparse.csr.csr_matrix)
def __getitem__(self, k):
mol_fp = self.Xs[k]
if self.is_smiles:
mol_fp = convert_smiles_to_fp(mol_fp, fp_size=self.fp_size, which=self.fingerprint_type).astype(np.float32)
target = None if self.target is None else self.target[k]
if self.is_smiles and self.target:
target = convert_smiles_to_fp(target, fp_size=self.fp_size, which=self.fingerprint_type).astype(np.float32)
label = self.ys[k]
if isinstance(self.ys, sparse.csr.csr_matrix):
label = label.toarray()[0]
return (mol_fp, target, label)
def __len__(self):
return len(self.Xs)
class ModelConfig(object):
def __init__(self, **kwargs):
self.fingerprint_type = kwargs.pop("fingerprint_type", 'morgan')
self.template_fp_type = kwargs.pop("template_fp_type", 'rdk')
self.num_templates = kwargs.pop("num_templates", 401)
self.fp_size = kwargs.pop("fp_size", 2048)
self.fp_radius = kwargs.pop("fp_radius", 4)
self.device = kwargs.pop("device", 'cuda' if torch.cuda.is_available() else 'cpu')
self.batch_size = kwargs.pop("batch_size", 32)
self.pooling_operation_state_embedding = kwargs.pop('pooling_operation_state_embedding', 'mean')
self.pooling_operation_head = kwargs.pop('pooling_operation_head', 'max')
self.dropout = kwargs.pop('dropout', 0.0)
self.lr = kwargs.pop('lr', 1e-4)
self.optimizer = kwargs.pop("optimizer", "Adam")
self.activation_function = kwargs.pop('activation_function', 'ReLU')
self.verbose = kwargs.pop("verbose", False) # debugging or printing additional warnings / information set tot True
self.hopf_input_size = kwargs.pop('hopf_input_size', 2048)
self.hopf_output_size = kwargs.pop("hopf_output_size", 768)
self.hopf_num_heads = kwargs.pop("hopf_num_heads", 1)
self.hopf_asso_dim = kwargs.pop("hopf_asso_dim", 768)
self.hopf_association_activation = kwargs.pop("hopf_association_activation", None)
self.hopf_beta = kwargs.pop("hopf_beta",0.125) # 1/(self.hopf_asso_dim**(1/2) sqrt(d_k)
self.norm_input = kwargs.pop("norm_input",False)
self.norm_asso = kwargs.pop("norm_asso", False)
# additional experimental hyperparams
if 'hopf_n_layers' in kwargs.keys():
self.hopf_n_layers = kwargs.pop('hopf_n_layers', 0)
if 'mol_encoder_layers' in kwargs.keys():
self.mol_encoder_layers = kwargs.pop('mol_encoder_layers', 1)
if 'temp_encoder_layers' in kwargs.keys():
self.temp_encoder_layers = kwargs.pop('temp_encoder_layers', 1)
if 'encoder_af' in kwargs.keys():
self.encoder_af = kwargs.pop('encoder_af', 'ReLU')
# additional kwargs
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
log.error(f"Can't set {key} with value {value} for {self}")
raise err
class Encoder(nn.Module):
"""Simple FFNN"""
def __init__(self, input_size: int = 2048, output_size: int = 1024,
num_layers: int = 1, dropout: float = 0.3, af_name: str ='None',
norm_in: bool = False, norm_out: bool = False):
super().__init__()
self.ws = []
self.setup_af(af_name)
self.norm_in = (lambda k: k) if not norm_in else torch.nn.LayerNorm(input_size, elementwise_affine=False)
self.norm_out = (lambda k: k) if not norm_out else torch.nn.LayerNorm(output_size, elementwise_affine=False)
self.setup_ff(input_size, output_size, num_layers)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x: torch.Tensor):
x = self.norm_in(x)
for i, w in enumerate(self.ws):
if i==(len(self.ws)-1):
x = self.dropout(w(x)) # all except last haf ff_af
else:
x = self.dropout(self.af(w(x)))
x = self.norm_out(x)
return x
def setup_ff(self, input_size:int, output_size:int, num_layers=1):
"""setup feed-forward NN with n-layers"""
for n in range(0, num_layers):
w = nn.Linear(input_size if n==0 else output_size, output_size)
torch.nn.init.kaiming_normal_(w.weight, mode='fan_in', nonlinearity='linear') # eqiv to LeCun init
setattr(self, f'W_{n}', w) # consider doing a step-wise reduction
self.ws.append(getattr(self, f'W_{n}'))
def setup_af(self, af_name : str):
"""set activation function"""
if af_name is None or (af_name == 'None'):
self.af = lambda k: k
else:
try:
self.af = getattr(nn, af_name)()
except AttributeError as err:
log.error(f"Can't find activation-function {af_name} in torch.nn")
raise err
class MoleculeEncoder(Encoder):
"""
Class for Molecule encoder: can be any class mapping Smiles to a Vector (preferable differentiable ;)
"""
def __init__(self, config):
self.config = config
class FPMolEncoder(Encoder):
"""
Fingerprint Based Molecular encoder
"""
def __init__(self, config):
super().__init__(input_size = config.hopf_input_size*config.hopf_num_heads,
output_size = config.hopf_asso_dim*config.hopf_num_heads,
num_layers = config.mol_encoder_layers,
dropout = config.dropout,
af_name = config.encoder_af,
norm_in = config.norm_input,
norm_out = config.norm_asso,
)
# number of layers = self.config.mol_encoder_layers
# layer-dimension = self.config.hopf_asso_dim
# activation-function = self.config.af
self.config = config
def forward_smiles(self, list_of_smiles: list):
fp_tensor = self.convert_smiles_to_tensor(list_of_smiles)
return self.forward(fp_tensor)
def convert_smiles_to_tensor(self, list_of_smiles):
fps = convert_smiles_to_fp(list_of_smiles, fp_size=self.config.fp_size,
which=self.config.fingerprint_type, radius=self.config.fp_radius)
fps_tensor = torch.from_numpy(fps.astype(np.float)).to(dtype=torch.float).to(self.config.device)
return fps_tensor
class TemplateEncoder(Encoder):
"""
Class for Template encoder: can be any class mapping a Smarts-Reaction to a Vector (preferable differentiable ;)
"""
def __init__(self, config):
super().__init__(input_size = config.hopf_input_size*config.hopf_num_heads,
output_size = config.hopf_asso_dim*config.hopf_num_heads,
num_layers = config.temp_encoder_layers,
dropout = config.dropout,
af_name = config.encoder_af,
norm_in = config.norm_input,
norm_out = config.norm_asso,
)
self.config = config
#number of layers
#template fingerprint type
#random template threshold
#reactant pooling
if config.temp_encoder_layers==0:
print('No Key-Projection = Static Key/Templates')
assert self.config.hopf_asso_dim==self.config.fp_size
self.wks = []
class MHN(nn.Module):
"""
MHN - modern Hopfield Network -- for Template relevance prediction
"""
def __init__(self, config=None, layer2weight=0.05, use_template_encoder=True):
super().__init__()
if config:
self.config = config
else:
self.config = ModelConfig()
self.beta = self.config.hopf_beta
# hopf_num_heads
self.mol_encoder = FPMolEncoder(self.config)
if use_template_encoder:
self.template_encoder = TemplateEncoder(self.config)
self.W_v = None
self.layer2weight = layer2weight
# more MHN layers -- added recursively
if hasattr(self.config, 'hopf_n_layers'):
di = self.config.__dict__
di['hopf_n_layers'] -= 1
if di['hopf_n_layers']>0:
conf_wo_hopf_nlayers = ModelConfig(**di)
self.layer = MHN(conf_wo_hopf_nlayers)
if di['hopf_n_layers']!=0:
self.W_v = nn.Linear(self.config.hopf_asso_dim, self.config.hopf_input_size)
torch.nn.init.kaiming_normal_(self.W_v.weight, mode='fan_in', nonlinearity='linear') # eqiv to LeCun init
self.softmax = torch.nn.Softmax(dim=1)
self.lossfunction = nn.CrossEntropyLoss(reduction='none')#, weight=class_weights)
self.pretrain_lossfunction = nn.BCEWithLogitsLoss(reduction='none')#, weight=class_weights)
self.lr = self.config.lr
if self.config.hopf_association_activation is None or (self.config.hopf_association_activation.lower()=='none'):
self.af = lambda k: k
else:
self.af = getattr(nn, self.config.hopf_association_activation)()
self.pooling_operation_head = getattr(torch, self.config.pooling_operation_head)
self.X = None # templates projected to Hopfield Layer
self.optimizer = getattr(torch.optim, self.config.optimizer)(self.parameters(), lr=self.lr)
self.steps = 0
self.hist = defaultdict(list)
self.to(self.config.device)
def set_templates(self, template_list, which='rdk', fp_size=None, radius=2, learnable=False, njobs=1, only_templates_in_batch=False):
self.template_list = template_list.copy()
if fp_size is None:
fp_size = self.config.fp_size
if len(template_list)>=100000:
import math
print('batch-wise template_calculation')
bs = 30000
final_temp_emb = torch.zeros((len(template_list), fp_size)).float().to(self.config.device)
for b in range(math.ceil(len(template_list)//bs)+1):
self.template_list = template_list[bs*b:min(bs*(b+1), len(template_list))]
templ_emb = self.update_template_embedding(which=which, fp_size=fp_size, radius=radius, learnable=learnable, njobs=njobs, only_templates_in_batch=only_templates_in_batch)
final_temp_emb[bs*b:min(bs*(b+1), len(template_list))] = torch.from_numpy(templ_emb)
self.templates = final_temp_emb
else:
self.update_template_embedding(which=which, fp_size=fp_size, radius=radius, learnable=learnable, njobs=njobs, only_templates_in_batch=only_templates_in_batch)
self.set_templates_recursively()
def set_templates_recursively(self):
if 'hopf_n_layers' in self.config.__dict__.keys():
if self.config.hopf_n_layers >0:
self.layer.templates = self.templates
self.layer.set_templates_recursively()
def update_template_embedding(self,fp_size=2048, radius=4, which='rdk', learnable=False, njobs=1, only_templates_in_batch=False):
print('updating template-embedding; (just computing the template-fingerprint and using that)')
bs = self.config.batch_size
split_template_list = [str(t).split('>')[0].split('.') for t in self.template_list]
templates_np = convert_smiles_to_fp(split_template_list, is_smarts=True, fp_size=fp_size, radius=radius, which=which, njobs=njobs)
split_template_list = [str(t).split('>')[-1].split('.') for t in self.template_list]
reactants_np = convert_smiles_to_fp(split_template_list, is_smarts=True, fp_size=fp_size, radius=radius, which=which, njobs=njobs)
template_representation = templates_np-(reactants_np*0.5)
if learnable:
self.templates = torch.nn.Parameter(torch.from_numpy(template_representation).float(), requires_grad=True).to(self.config.device)
self.register_parameter(name='templates', param=self.templates)
else:
if only_templates_in_batch:
self.templates_np = template_representation
else:
self.templates = torch.from_numpy(template_representation).float().to(self.config.device)
return template_representation
def np_fp_to_tensor(self, np_fp):
return torch.from_numpy(np_fp.astype(np.float64)).to(self.config.device).float()
def masked_loss_fun(self, loss_fun, h_out, ys_batch):
if loss_fun == self.BCEWithLogitsLoss:
mask = (ys_batch != -1).float()
ys_batch = ys_batch.float()
else:
mask = (ys_batch.long() != -1).long()
mask_sum = int(mask.sum().cpu().numpy())
if mask_sum == 0:
return 0
ys_batch = ys_batch * mask
loss = (loss_fun(h_out, ys_batch * mask) * mask.float()).sum() / mask_sum # only mean from non -1
return loss
def compute_losses(self, out, ys_batch, head_loss_weight=None):
if len(ys_batch.shape)==2:
if ys_batch.shape[1]==self.config.num_templates: # it is in pretraining_mode
loss = self.pretrain_lossfunction(out, ys_batch.float()).mean()
else:
# legacy from policyNN
loss = self.lossfunction(out, ys_batch[:, 2]).mean() # WARNING: HEAD4 Reaction Template is ys[:,2]
else:
loss = self.lossfunction(out, ys_batch).mean()
return loss
def forward_smiles(self, list_of_smiles, templates=None):
state_tensor = self.mol_encoder.convert_smiles_to_tensor(list_of_smiles)
return self.forward(state_tensor, templates=templates)
def forward(self, m, templates=None):
"""
m: molecule in the form batch x fingerprint
templates: None or newly given templates if not instanciated
returns logits ranking the templates for each molecule
"""
#states_emb = self.fcfe(state_fp)
bs = m.shape[0] #batch_size
#templates = self.temp_emb(torch.arange(0,2000).long())
if (templates is None) and (self.X is None) and (self.templates is None):
raise Exception('Either pass in templates, or init templates by runnting clf.set_templates')
n_temp = len(templates) if templates is not None else len(self.templates)
if self.training or (templates is None) or (self.X is not None):
templates = templates if templates is not None else self.templates
X = self.template_encoder(templates)
else:
X = self.X # precomputed from last forward run
Xi = self.mol_encoder(m)
Xi = Xi.view(bs, self.config.hopf_num_heads, self.config.hopf_asso_dim) # [bs, H, A]
X = X.view(1, n_temp, self.config.hopf_asso_dim, self.config.hopf_num_heads) #[1, T, A, H]
XXi = torch.tensordot(Xi, X, dims=[(2,1), (2,0)]) # AxA -> [bs, T, H]
# pooling over heads
if self.config.hopf_num_heads<=1:
#QKt_pooled = QKt
XXi = XXi[:,:,0] #torch.squeeze(QKt, dim=2)
else:
XXi = self.pooling_operation_head(XXi, dim=2) # default is max pooling over H [bs, T]
if (self.config.pooling_operation_head =='max') or (self.config.pooling_operation_head =='min'):
XXi = XXi[0] #max and min also return the indices =S
out = self.beta*XXi # [bs, T, H] # softmax over dim=1 #pooling_operation_head
self.xinew = self.softmax(out)@X.view(n_temp, self.config.hopf_asso_dim) # [bs,T]@[T,emb] -> [bs,emb]
if self.W_v:
# call layers recursive
hopfout = self.W_v(self.xinew) # [bs,emb]@[emb,hopf_inp] --> [bs, hopf_inp]
# TODO check if using x_pooled or if not going through mol_encoder again
hopfout = hopfout + m # skip-connection
# give it to the next layer
out2 = self.layer.forward(hopfout) #templates=self.W_v(self.K)
out = out*(1-self.layer2weight)+out2*self.layer2weight
return out
def train_from_np(self, Xs, targets, ys, is_smiles=False, epochs=2, lr=0.001, bs=32,
permute_batches=False, shuffle=True, optimizer=None,
use_dataloader=True, verbose=False,
wandb=None, scheduler=None, only_templates_in_batch=False):
"""
Xs in the form sample x states
targets
ys in the form sample x [y_h1, y_h2, y_h3, y_h4]
"""
self.train()
if optimizer is None:
try:
self.optimizer = getattr(torch.optim, self.config.optimizer)(self.parameters(), lr=self.lr if lr is None else lr)
except AttributeError as err:
log.error(f"Can't find optimizer {config.optimizer} in torch.optim")
raise err
optimizer = self.optimizer
dataset = ChemRXNDataset(Xs, targets, ys, is_smiles=is_smiles,
fp_size=self.config.fp_size, fingerprint_type=self.config.fingerprint_type)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=bs, shuffle=shuffle, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None)
for epoch in range(epochs): # loop over the dataset multiple times
running_loss = 0.0
running_loss_dict = defaultdict(int)
batch_order = range(0, len(Xs), bs)
if permute_batches:
batch_order = np.random.permutation(batch_order)
for step, s in tqdm(enumerate(dataloader),mininterval=2):
batch = [b.to(self.config.device, non_blocking=True) for b in s]
Xs_batch, target_batch, ys_batch = batch
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
out = self.forward(Xs_batch)
total_loss = self.compute_losses(out, ys_batch)
loss_dict = {'CE_loss': total_loss}
total_loss.backward()
optimizer.step()
if scheduler:
scheduler.step()
self.steps += 1
# print statistics
for k in loss_dict:
running_loss_dict[k] += loss_dict[k].item()
try:
running_loss += total_loss.item()
except:
running_loss += 0
rs = min(100,len(Xs)//bs) # reporting/logging steps
if step % rs == (rs-1): # print every 2000 mini-batches
if verbose: print('[%d, %5d] loss: %.3f' %
(epoch + 1, step + 1, running_loss / rs))
self.hist['step'].append(self.steps)
self.hist['loss'].append(running_loss/rs)
self.hist['trianing_running_loss'].append(running_loss/rs)
[self.hist[k].append(running_loss_dict[k]/rs) for k in running_loss_dict]
if wandb:
wandb.log({'trianing_running_loss': running_loss / rs})
running_loss = 0.0
running_loss_dict = defaultdict(int)
if verbose: print('Finished Training')
return optimizer
def evaluate(self, Xs, targets, ys, split='test', is_smiles=False, bs = 32, shuffle=False, wandb=None, only_loss=False):
self.eval()
y_preds = np.zeros( (ys.shape[0], self.config.num_templates), dtype=np.float16)
loss_metrics = defaultdict(int)
new_hist = defaultdict(float)
with torch.no_grad():
dataset = ChemRXNDataset(Xs, targets, ys, is_smiles=is_smiles,
fp_size=self.config.fp_size, fingerprint_type=self.config.fingerprint_type)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=bs, shuffle=shuffle, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None)
#for step, s in eoutputs = self.forward(batch[0], batchnumerate(range(0, len(Xs), bs)):
for step, batch in enumerate(dataloader):#
batch = [b.to(self.config.device, non_blocking=True) for b in batch]
ys_batch = batch[2]
if hasattr(self, 'templates_np'):
outputs = []
for ii in range(10):
tlen = len(self.templates_np)
i_tlen = tlen//10
templates = torch.from_numpy(self.templates_np[(i_tlen*ii):min(i_tlen*(ii+1), tlen)]).float().to(self.config.device)
outputs.append( self.forward(batch[0], templates = templates ) )
outputs = torch.cat(outputs, dim=0)
else:
outputs = self.forward(batch[0])
loss = self.compute_losses(outputs, ys_batch, None)
# not quite right because in every batch there might be different number of valid samples
weight = 1/len(batch[0])#len(Xs[s:min(s + bs, len(Xs))]) / len(Xs)
loss_metrics['loss'] += (loss.item())
if len(ys.shape)>1:
outputs = self.softmax(outputs) if not (ys.shape[1]==self.config.num_templates) else torch.sigmoid(outputs)
else:
outputs = self.softmax(outputs)
outputs_np = [None if o is None else o.to('cpu').numpy().astype(np.float16) for o in outputs]
if not only_loss:
ks = [1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100]
topkacc, mrocc = top_k_accuracy(ys_batch, outputs, k=ks, ret_arocc=True, ret_mrocc=False)
# mrocc -- median rank of correct choice
for k, tkacc in zip(ks, topkacc):
#iterative average update
new_hist[f't{k}_acc_{split}'] += (tkacc-new_hist[f't{k}_acc_{split}']) / (step+1)
# todo weight by batch-size
new_hist[f'meanrank_{split}'] = mrocc
y_preds[step*bs : min((step+1)*bs,len(y_preds))] = outputs_np
new_hist[f'steps_{split}'] = (self.steps)
new_hist[f'loss_{split}'] = (loss_metrics['loss'] / (step+1))
for k in new_hist:
self.hist[k].append(new_hist[k])
if wandb:
wandb.log(new_hist)
self.hist[f'loss_{split}'].append(loss_metrics[f'loss'] / (step+1))
return y_preds
def save_hist(self, prefix='', postfix=''):
HIST_PATH = 'data/hist/'
if not os.path.exists(HIST_PATH):
os.mkdir(HIST_PATH)
fn_hist = HIST_PATH+prefix+postfix+'.csv'
with open(fn_hist, 'w') as fh:
print(dict(self.hist), file=fh)
return fn_hist
def save_model(self, prefix='', postfix='', name_as_conf=False):
MODEL_PATH = 'data/model/'
if not os.path.exists(MODEL_PATH):
os.mkdir(MODEL_PATH)
if name_as_conf:
confi_str = str(self.config.__dict__.values()).replace("'","").replace(': ','_').replace(', ',';')
else:
confi_str = ''
model_name = prefix+confi_str+postfix+'.pt'
torch.save(self.state_dict(), MODEL_PATH+model_name)
return MODEL_PATH+model_name
def plot_loss(self):
plot_loss(self.hist)
def plot_topk(self, sets=['train', 'valid', 'test'], with_last = 2):
plot_topk(self.hist, sets=sets, with_last = with_last)
def plot_nte(self, last_cpt=1, dataset='Sm', include_bar=True):
plot_nte(self.hist, dataset=dataset, last_cpt=last_cpt, include_bar=include_bar)
class SeglerBaseline(MHN):
"""FFNN - only the Molecule Encoder + an output projection"""
def __init__(self, config=None):
config.template_fp_type = 'none'
config.temp_encoder_layers = 0
super().__init__(config, use_template_encoder=False)
self.W_out = torch.nn.Linear(config.hopf_asso_dim, config.num_templates)
self.optimizer = getattr(torch.optim, self.config.optimizer)(self.parameters(), lr=self.lr)
self.steps = 0
self.hist = defaultdict(list)
self.to(self.config.device)
def forward(self, m, templates=None):
"""
m: molecule in the form batch x fingerprint
templates: won't be used in this case
returns logits ranking the templates for each molecule
"""
bs = m.shape[0] #batch_size
Xi = self.mol_encoder(m)
Xi = self.mol_encoder.af(Xi) # is not applied in encoder for last layer
out = self.W_out(Xi) # [bs, T] # softmax over dim=1
return out
class StaticQK(MHN):
""" Static QK baseline - beware to have the same fingerprint for mol_encoder as for the template_encoder (fp2048 r4 rdk by default)"""
def __init__(self, config=None):
if config:
self.config = config
else:
self.config = ModelConfig()
super().__init__(config)
self.fp_size = 2048
self.fingerprint_type = 'rdk'
self.beta = 1
def update_template_embedding(self, which='rdk', fp_size=2048, radius=4, learnable=False):
bs = self.config.batch_size
split_template_list = [t.split('>>')[0].split('.') for t in self.template_list]
self.templates = torch.from_numpy(convert_smiles_to_fp(split_template_list,
is_smarts=True, fp_size=fp_size,
radius=radius, which=which).max(1)).float().to(self.config.device)
def forward(self, m, templates=None):
"""
"""
#states_emb = self.fcfe(state_fp)
bs = m.shape[0] #batch_size
Xi = m #[bs, emb]
X = self.templates #[T, emb])
XXi = [email protected] # [bs, T]
# normalize
t_sum = templates.sum(1) #[T]
t_sum = t_sum.view(1,-1).expand(bs, -1) #[bs, T]
XXi = XXi / t_sum
# not neccecaire because it is not trained
out = self.beta*XXi # [bs, T] # softmax over dim=1
return out
class Retrosim(StaticQK):
""" Retrosim-like baseline only for template relevance prediction """
def fit_with_train(self, X_fp_train, y_train):
self.templates = torch.from_numpy(X_fp_train).float().to(self.config.device)
# train_samples, num_templates
self.sample2acttemplate = torch.nn.functional.one_hot(torch.from_numpy(y_train), self.config.num_templates).float()
tmpnorm = self.sample2acttemplate.sum(0)
tmpnorm[tmpnorm==0] = 1
self.sample2acttemplate = (self.sample2acttemplate / tmpnorm).to(self.config.device) # results in an average after dot product
def forward(self, m, templates=None):
"""
"""
out = super().forward(m, templates=templates)
# bs, train_samples
# map out to actual templates
out = out @ self.sample2acttemplate
return out |