Spaces:
Runtime error
Runtime error
File size: 7,622 Bytes
2956799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# -*- coding: utf-8 -*-
"""
Author: Philipp Seidl, Philipp Renz
ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning
Johannes Kepler University Linz
Contact: [email protected]
Evaluation functions for single-step-retrosynthesis
"""
import sys
import rdchiral
from rdchiral.main import rdchiralRun, rdchiralReaction, rdchiralReactants
import hashlib
from rdkit import Chem
import torch
import numpy as np
import pandas as pd
from collections import defaultdict
from copy import deepcopy
from glob import glob
import os
import pickle
from multiprocessing import Pool
import hashlib
import pickle
import logging
#import timeout_decorator
def _cont_hash(fn):
with open(fn, 'rb') as f:
return hashlib.md5(f.read()).hexdigest()
def load_templates_only(path, cache_dir='/tmp'):
arg_hash_base = 'load_templates_only' + path
arg_hash = hashlib.md5(arg_hash_base.encode()).hexdigest()
matches = glob(os.path.join(cache_dir, arg_hash+'*'))
if len(matches) > 1:
raise RuntimeError('Too many matches')
elif len(matches) == 1:
fn = matches[0]
content_hash = _cont_hash(path)
content_hash_file = os.path.basename(fn).split('_')[1].split('.')[0]
if content_hash_file == content_hash:
with open(fn, 'rb') as f:
return pickle.load(f)
df = pd.read_json(path)
template_dict = {}
for row in range(len(df)):
template_dict[df.iloc[row]['index']] = df.iloc[row].reaction_smarts
# cache the file
content_hash = _cont_hash(path)
fn = os.path.join(cache_dir, f"{arg_hash}_{content_hash}.p")
with open(fn, 'wb') as f:
pickle.dump(template_dict, f)
def load_templates_v2(path, get_complete_df=False):
if get_complete_df:
df = pd.read_json(path)
return df
return load_templates_only(path)
def canonicalize_reactants(smiles, can_steps=2):
if can_steps==0:
return smiles
mol = Chem.MolFromSmiles(smiles)
for a in mol.GetAtoms():
a.ClearProp('molAtomMapNumber')
smiles = Chem.MolToSmiles(mol, True)
if can_steps==1:
return smiles
smiles = Chem.MolToSmiles(Chem.MolFromSmiles(smiles), True)
if can_steps==2:
return smiles
raise ValueError("Invalid can_steps")
def load_test_set(fn):
df = pd.read_csv(fn, index_col=0)
test = df[df.dataset=='test']
test_product_smarts = list(test.prod_smiles) # we make predictions for these
for s in test_product_smarts:
assert len(s.split('.')) == 1
assert '>' not in s
test_reactants = [] # we want to predict these
for rs in list(test.rxn_smiles):
rs = rs.split('>>')
assert len(rs) == 2
reactants_ori, products = rs
reactants = reactants_ori.split('.')
products = products.split('.')
assert len(reactants) >= 1
assert len(products) == 1
test_reactants.append(reactants_ori)
return test_product_smarts, test_reactants
#@timeout_decorator.timeout(1, use_signals=False)
def time_out_rdchiralRun(temp, prod_rct, combine_enantiomers=False):
rxn = rdchiralReaction(temp)
return rdchiralRun(rxn, prod_rct, combine_enantiomers=combine_enantiomers)
def _run_templates_rdchiral(prod_appl):
prod, applicable_templates = prod_appl
prod_rct = rdchiralReactants(prod) # preprocess reactants with rdchiral
results = {}
for idx, temp in applicable_templates:
temp = str(temp)
try:
results[(idx, temp)] = time_out_rdchiralRun(temp, prod_rct, combine_enantiomers=False)
except:
pass
return results
def _run_templates_rdchiral_original(prod_appl):
prod, applicable_templates = prod_appl
prod_rct = rdchiralReactants(prod) # preprocess reactants with rdchiral
results = {}
rxn_cache = {}
for idx, temp in applicable_templates:
temp = str(temp)
if temp in rxn_cache:
rxn = rxn_cache[(temp)]
else:
try:
rxn = rdchiralReaction(temp)
rxn_cache[temp] = rxn
except:
rxn_cache[temp] = None
msg = temp+' error converting to rdchiralReaction'
logging.debug(msg)
try:
res = rdchiralRun(rxn, prod_rct, combine_enantiomers=False)
results[(idx, temp)] = res
except:
pass
return results
def run_templates(test_product_smarts, templates, appl, njobs=32, cache_dir='/tmp'):
appl_dict = defaultdict(list)
for i,j in zip(*appl):
appl_dict[i].append(j)
prod_appl_list = []
for prod_idx, prod in enumerate(test_product_smarts):
applicable_templates = [(idx, templates[idx]) for idx in appl_dict[prod_idx]]
prod_appl_list.append((prod, applicable_templates))
arg_hash = hashlib.md5(pickle.dumps(prod_appl_list)).hexdigest()
cache_file = os.path.join(cache_dir, arg_hash+'.p')
if os.path.isfile(cache_file):
with open(cache_file, 'rb') as f:
print('loading results from file',f)
all_results = pickle.load(f)
#find /tmp -type f \( ! -user root \) -atime +3 -delete
# to delete the tmp files that havent been accessed 3 days
else:
#with Pool(njobs) as pool:
# all_results = pool.map(_run_templates_rdchiral, prod_appl_list)
from tqdm.contrib.concurrent import process_map
all_results = process_map(_run_templates_rdchiral, prod_appl_list, max_workers=njobs, chunksize=1, mininterval=2)
#with open(cache_file, 'wb') as f:
# print('saving applicable_templates to cache', cache_file)
# pickle.dump(all_results, f)
prod_idx_reactants = []
prod_temp_reactants = []
for prod, idx_temp_reactants in zip(test_product_smarts, all_results):
prod_idx_reactants.append({idx_temp[0]: r for idx_temp, r in idx_temp_reactants.items()})
prod_temp_reactants.append({idx_temp[1]: r for idx_temp, r in idx_temp_reactants.items()})
return prod_idx_reactants, prod_temp_reactants
def sort_by_template(template_scores, prod_idx_reactants):
sorted_results = []
for i, predictions in enumerate(prod_idx_reactants):
score_row = template_scores[i]
appl_idxs = np.array(list(predictions.keys()))
if len(appl_idxs) == 0:
sorted_results.append([])
continue
scores = score_row[appl_idxs]
sorted_idxs = appl_idxs[np.argsort(scores)][::-1]
sorted_reactants = [predictions[idx] for idx in sorted_idxs]
sorted_results.append(sorted_reactants)
return sorted_results
def no_dup_same_order(l):
return list({r: 0 for r in l}.keys())
def flatten_per_product(sorted_results, remove_duplicates=True):
flat_results = [sum((r for r in row), []) for row in sorted_results]
if remove_duplicates:
flat_results = [no_dup_same_order(row) for row in flat_results]
return flat_results
def topkaccuracy(test_reactants, predicted_reactants, ks=[1], ret_ranks=False):
ks = [k if k is not None else 1e10 for k in ks]
ranks = []
for true, pred in zip(test_reactants, predicted_reactants):
try:
rank = pred.index(true) + 1
except ValueError:
rank = 1e15
ranks.append(rank)
ranks = np.array(ranks)
if ret_ranks:
return ranks
return [np.mean([ranks <= k]) for k in ks] |