File size: 30,855 Bytes
2956799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
# -*- coding: utf-8 -*-
"""
Author: Philipp Seidl, Philipp Renz
        ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning
        Johannes Kepler University Linz
Contact: [email protected]

Molutils contains functions that aid in handling molecules or templates
"""

import logging
import re
import warnings
from itertools import product, permutations

from multiprocessing import Pool
from tqdm.contrib.concurrent import process_map
from tqdm.notebook import tqdm
import swifter

import rdkit.RDLogger as rkl
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem.rdMolDescriptors import GetMorganFingerprint
from rdkit.Chem.rdmolops import FastFindRings
from rdkit.Chem.rdMHFPFingerprint import MHFPEncoder

from scipy import sparse
from sklearn.feature_extraction import DictVectorizer

import warnings
import rdkit.RDLogger as rkl
import numpy as np

log = logging.getLogger(__name__)
logger = rkl.logger()

def remove_attom_mapping(smiles):
    """ removes a number after a ':' """
    return re.sub(r':\d+', '', str(smiles))


def canonicalize_smi(smi, is_smarts=False, remove_atom_mapping=True):
    r"""
    Canonicalize SMARTS from https://github.com/rxn4chemistry/rxnfp/blob/master/rxnfp/tokenization.py#L249
    """
    mol = Chem.MolFromSmarts(smi)
    if not mol:
        raise ValueError("Molecule not canonicalizable")
    if remove_atom_mapping:
        for atom in mol.GetAtoms():
            if atom.HasProp("molAtomMapNumber"):
                atom.ClearProp("molAtomMapNumber")
    return Chem.MolToSmiles(mol)


def canonicalize_template(smarts):
    smarts = str(smarts)
    # remove attom-mapping
    #smarts = remove_attom_mapping(smarts)

    # order the list of smiles + canonicalize it
    results = []
    for part in smarts.split('>>'):
        a = part.split('.')
        a = [canonicalize_smi(x, is_smarts=True, remove_atom_mapping=True) for x in a]
        #a = [remove_attom_mapping(x) for x in a]
        a.sort()
        results.append( '.'.join(a) )
    return '>>'.join(results)

def ebv2np(ebv):
    """Explicit bit vector returned by rdkit to numpy array. """
    return np.frombuffer(bytes(ebv.ToBitString(), 'utf-8'), 'u1') - ord('0')

def smiles2morgan(smiles, radius=2):
    """ computes ecfp from smiles """
    return GetMorganFingerprint(smiles, radius)


def getFingerprint(smiles, fp_size=4096, radius=2, is_smarts=False, which='morgan', sanitize=True):
    """maccs+morganc+topologicaltorsion+erg+atompair+pattern+rdkc"""
    if isinstance(smiles, list):
        return np.array([getFingerprint(smi, fp_size, radius, is_smarts, which) for smi in smiles]).max(0) # max pooling if it's list of lists

    if is_smarts:
        mol = Chem.MolFromSmarts(str(smiles), mergeHs=False)
        #mol.UpdatePropertyCache() #Correcting valence info
        #FastFindRings(mol) #Providing ring info
    else:
        mol = Chem.MolFromSmiles(str(smiles), sanitize=False)

    if mol is None:
        msg = f"{smiles} couldn't be converted to a fingerprint using 0's instead"
        logger.warning(msg)
        #warnings.warn(msg)
        return np.zeros(fp_size).astype(np.bool)

    if sanitize:
        faild_op = Chem.SanitizeMol(mol, catchErrors=True)
        FastFindRings(mol) #Providing ring info

    mol.UpdatePropertyCache(strict=False) #Correcting valence info # important operation

    def mol2np(mol, which, fp_size):
        is_dict = False
        if which=='morgan':
            fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=fp_size, useFeatures=False, useChirality=True)
        elif which=='rdk':
            fp = Chem.RDKFingerprint(mol, fpSize=fp_size, maxPath=6)
        elif which=='rdkc':
            # https://greglandrum.github.io/rdkit-blog/similarity/reference/2021/05/26/similarity-threshold-observations1.html
            # -- maxPath 6 found to be better for retrieval in databases
            fp = AllChem.UnfoldedRDKFingerprintCountBased(mol, maxPath=6).GetNonzeroElements()
            is_dict = True
        elif which=='morganc':
            fp = AllChem.GetMorganFingerprint(mol, radius, useChirality=True, useBondTypes=True, useFeatures=True,  useCounts=True).GetNonzeroElements()
            is_dict = True
        elif which=='topologicaltorsion':
            fp = AllChem.GetTopologicalTorsionFingerprint(mol).GetNonzeroElements()
            is_dict = True
        elif which=='maccs':
            fp = AllChem.GetMACCSKeysFingerprint(mol)
        elif which=='erg':
            v = AllChem.GetErGFingerprint(mol)
            fp = {idx:v[idx] for idx in np.nonzero(v)[0]}
            is_dict = True
        elif which=='atompair':
            fp = AllChem.GetAtomPairFingerprint(mol).GetNonzeroElements()
            is_dict = True
        elif which=='pattern':
            fp = Chem.PatternFingerprint(mol, fpSize=fp_size)
        elif which=='ecfp4':
            # roughly equivalent to ECFP4
            fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=fp_size, useFeatures=False, useChirality=True)
        elif which=='layered':
            fp = AllChem.LayeredFingerprint(mol, fpSize=fp_size, maxPath=7)
        elif which=='mhfp':
            #TODO check if one can avoid instantiating the MHFP encoder
            fp = MHFPEncoder().EncodeMol(mol, radius=radius, rings=True, isomeric=False, kekulize=False, min_radius=1)
            fp = {f:1 for f in fp}
            is_dict = True
        elif not (type(which)==str):
            fp = which(mol)

        if is_dict:
            nd = np.zeros(fp_size)
            for k in fp:
                nk = k%fp_size #remainder
                #print(nk, k, fp_size)
                #3160 36322170 3730
                #print(nd[nk], fp[k])
                if nd[nk]!=0:
                    #print('c',end='')
                    nd[nk] = nd[nk]+fp[k] #pooling colisions
                nd[nk] = fp[k]

            return nd #np.log(1+nd) # discussion with segler

        return ebv2np(fp)

    """ + for folding * for concat """
    cc_symb = '*'
    if ('+' in which) or (cc_symb in which):
        concat = False
        split_sym = '+'
        if cc_symb in which:
            concat=True
            split_sym = '*'

        np_fp = np.zeros(fp_size)

        remaining_fps = (which.count(split_sym)+1)
        fp_length_remain = fp_size

        for fp_type in which.split(split_sym):
            if concat:
                fpp = mol2np(mol, fp_type, fp_length_remain//remaining_fps)
                np_fp[(fp_size-fp_length_remain):(fp_size-fp_length_remain+len(fpp))] += fpp
                fp_length_remain -= len(fpp)
                remaining_fps -=1
            else:
                try:
                  fpp = mol2np(mol, fp_type, fp_size)
                  np_fp[:len(fpp)] += fpp
                except:
                  pass
                  #print(fp_type,end='')

        return np.log(1 + np_fp)
    else:
        return mol2np(mol, which, fp_size)


def _getFingerprint(inp):
  return getFingerprint(inp[0], inp[1], inp[2], inp[3], inp[4])


def disable_rdkit_logging():
    """
    Disables RDKit whiny logging.
    """
    import rdkit.rdBase as rkrb
    import rdkit.RDLogger as rkl
    logger.setLevel(rkl.ERROR)
    rkrb.DisableLog('rdApp.error')


def convert_smiles_to_fp(list_of_smiles, fp_size=2048, is_smarts=False, which='morgan', radius=2, njobs=1, verbose=False):
    """
    list of smiles can be list of lists, than the resulting array will pe badded to the max list len
    which: morgan, rdk, ecfp4, or object
    NOTE: morgan or ecfp4 throws error for is_smarts
    """

    inp = [(smi, fp_size, radius, is_smarts, which) for smi in list_of_smiles]
    #print(inp)
    if verbose: print(f'starting pool with {njobs} workers')
    if njobs>1:
    #with Pool(njobs) as pool:
    #    fps = pool.map(_getFingerprint, inp)
        fps = process_map(_getFingerprint, inp, max_workers=njobs, chunksize=1, mininterval=0)
    else:
        fps = [getFingerprint(smi, fp_size=fp_size, radius=radius, is_smarts=is_smarts, which=which) for smi in list_of_smiles]
    return np.array(fps)


def convert_smartes_to_fp(list_of_smarts, fp_size=2048):
    if isinstance(list_of_smarts, np.ndarray):
        list_of_smarts = list_of_smarts.tolist()
    if isinstance(list_of_smarts, list):
        if isinstance(list_of_smarts[0], list):
            pad = len(max(list_of_smarts, key=len))
            fps = [[getTemplateFingerprint(smarts, fp_size=fp_size) for smarts in sample]
                   + [np.zeros(fp_size, dtype=np.bool)] * (pad - len(sample))  # zero padding
                   for sample in list_of_smarts]
        else:
            fps = [[getTemplateFingerprint(smarts, fp_size=fp_size) for smarts in list_of_smarts]]
    return np.asarray(fps)


def get_reactants_from_smarts(smarts):
    """
        from a (forward-)reaction given as a smart, only returns the reactants (not e.g. solvents or reagents)
        returns list of smiles or empty list
    """
    from rdkit.Chem import RDConfig
    import sys
    sys.path.append(RDConfig.RDContribDir)
    from RxnRoleAssignment import identifyReactants
    try:
        rdk_reaction = AllChem.ReactionFromSmarts(smarts)
        rx_idx = identifyReactants.identifyReactants(rdk_reaction)[0][0]
    except ValueError:
        return []
    # TODO what if a product is recognized as a reactanat.. is that possible??
    return [Chem.MolToSmiles(rdk_reaction.GetReactants()[i]) for i in rx_idx]


def smarts2rdkfp(smart, fp_size=2048):
    mol = Chem.MolFromSmarts(str(smart))
    if mol is None: return np.zeros(fp_size).astype(np.bool)
    return AllChem.RDKFingerprint(mol)
    # fp = np.asarray(fp).astype(np.bool) # takes ages =/


def smiles2rdkfp(smiles, fp_size=2048):
    mol = Chem.MolFromSmiles(str(smiles))
    if mol is None: return np.zeros(fp_size).astype(np.bool)
    return AllChem.RDKFingerprint(mol)


def mol2morganfp(mol, radius=2, fp_size=2048):
    try:
        Chem.SanitizeMol(mol)  # due to error --> see https://sourceforge.net/p/rdkit/mailman/message/34828604/
    except:
        pass
        # print(mol)
        # return np.zeros(fp_size).astype(np.bool)
        # TODO
    return AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=fp_size)


def smarts2morganfp(smart, fp_size=2048, radius=2):
    mol = Chem.MolFromSmarts(str(smart))
    if mol is None: return np.zeros(fp_size).astype(np.bool)
    return mol2morganfp(mol)


def smiles2morganfp(smiles, fp_size=2048, radius=2):
    mol = Chem.MolFromSmiles(str(smiles))
    if mol is None: return np.zeros(fp_size).astype(np.bool)
    return mol2morganfp(mol)


def smarts2fp(smart, which='morgan', fp_size=2048, radius=2):
    if which == 'rdk':
        return smarts2rdkfp(smart, fp_size=fp_size)
    else:
        return smarts2morganfp(smart, fp_size=fp_size, radius=radius)


def smiles2fp(smiles, which='morgan', fp_size=2048, radius=2):
    if which == 'rdk':
        return smiles2rdkfp(smiles, fp_size=fp_size)
    else:
        return smiles2morganfp(smiles, fp_size=fp_size, radius=radius)


class FP_featurizer():
    "FP_featurizer: Fingerprint featurizer"
    def __init__(self,
                 fp_types = ['MACCS','Morgan2CBF', 'Morgan6CBF', 'ErG','AtomPair','TopologicalTorsion','RDK','ECFP6'],
                 max_features = 4096, counts=True, log_scale=True, folding=None, collision_pooling='max'):

        self.v = DictVectorizer(sparse=True, dtype=np.uint16)
        self.max_features = max_features
        self.idx_col = None
        self.counts = counts
        self.fp_types = [fp_types] if isinstance(fp_types, str) else fp_types

        self.log_scale = log_scale # from discussion with segler

        self.folding = None
        self.colision_pooling = collision_pooling

    def compute_fp_list(self, smiles_list, is_smarts=False):
        fp_list = []
        for smiles in smiles_list:
            try:
                if isinstance(smiles, list):
                    smiles = smiles[0]
                if is_smarts:
                    mol = Chem.MolFromSmarts(smiles)
                else:
                    mol = Chem.MolFromSmiles(smiles) #TODO small hack only applicable here!!!
                fp_dict = {}
                for fp_type in self.fp_types:
                    fp_dict.update( fingerprintTypes[fp_type](mol) ) #returns a dict
                fp_list.append(fp_dict)
            except:
                fp_list.append({})
        return fp_list

    def fit(self, x_train, is_smarts=False):
        fp_list = self.compute_fp_list(x_train, is_smarts=is_smarts)
        Xraw = self.v.fit_transform(fp_list)
        # compute variance of a csr_matrix E[x**2] - E[x]**2
        axis = 0
        Xraw_sqrd = Xraw.copy()
        Xraw_sqrd.data **= 2
        var_col = Xraw_sqrd.mean(axis) - np.square(Xraw.mean(axis))
        #idx_col = (-np.array((Xraw>0).var(axis=0)).argpartition(self.max_features))
        #idx_col = np.array((Xraw>0).sum(axis=0)>=self.min_fragm_occur).flatten()
        self.idx_col = (-np.array(var_col)).flatten().argpartition(min(self.max_features, Xraw.shape[1]-1))[:min(self.max_features, Xraw.shape[1])]
        print(f'from {var_col.shape[1]} to {len(self.idx_col)}')
        return self.scale(Xraw[:,self.idx_col].toarray())

    def transform(self, x_test, is_smarts=False):
        fp_list = self.compute_fp_list(x_test, is_smarts=is_smarts)
        X_raw = self.v.transform(fp_list)
        return self.scale(X_raw[:,self.idx_col].toarray())

    def scale(self, X):
        if self.log_scale:
            return np.log(1 + X)
        return X

    def save(self, path='data/fpfeat.pkl'):
        import pickle
        with open(path, 'wb') as output:
            pickle.dump(self, output, pickle.HIGHEST_PROTOCOL)

    def load(self, path='data/fpfeat.pkl'):
        import pickle
        with open(path, 'rb') as input:
            self = pickle.load(input)


def getTemplateFingerprintOnBits(smarts, fp_size=2048):
    rxn = AllChem.ReactionFromSmarts(str(smarts))
    #construct a structural fingerprint for a ChemicalReaction by concatenating the reactant fingerprint and the product fingerprint
    return (AllChem.CreateStructuralFingerprintForReaction(rxn)).GetOnBits()


def calc_template_fingerprint_group_mapping(template_list, fp_size, save_path=''):
    """
    calculate the mapping from old idx to new idx for the templates
    returns a set with a numpy array with the mapping and the indices to take
    """

    templ_df = pd.DataFrame()
    templ_df['smarts'] = template_list
    templ_df['templ_emb'] = templ_df['smarts'].swifter.apply(lambda smarts: str(list(getTemplateFingerprintOnBits(smarts, fp_size))))
    templ_df['idx_orig'] = [ii for ii in range(len(templ_df))]

    grouped_templ = templ_df.groupby('templ_emb').apply(lambda x: x.index.tolist())

    grouped_templ = templ_df.groupby('templ_emb')
    grouped_templ = grouped_templ.min().sort_values('idx_orig')
    grouped_templ['new_idx'] = range(len(grouped_templ))

    new_templ_df = templ_df.join(grouped_templ, on='templ_emb',how='right', lsuffix='_l', rsuffix='_r').sort_values('idx_orig_l')

    map_orig2new = new_templ_df['new_idx'].values
    take_those_indices_from_orig = grouped_templ.idx_orig.values
    if save_path!='':
        suffix_maporig2new = '_maporig2new.npy'
        suffix_takethose = '_tfp_take_idxs.npy'
        np.save(f'{save_path}{suffix_maporig2new}', map_orig2new,allow_pickle=False)
        np.save(f'{save_path}{suffix_takethose}', take_those_indices_from_orig,allow_pickle=False)
    return (map_orig2new, take_those_indices_from_orig)


class ECFC_featurizer():
    def __init__(self, radius=6, min_fragm_occur=50, useChirality=True, useFeatures=False):
        self.v = DictVectorizer(sparse=True, dtype=np.uint16)
        self.min_fragm_occur=min_fragm_occur
        self.idx_col = None
        self.radius=radius
        self.useChirality = useChirality
        self.useFeatures = useFeatures

    def compute_fp_list(self, smiles_list):
        fp_list = []
        for smiles in smiles_list:
            try:
                if isinstance(smiles, list):
                    smiles = smiles[0]
                mol = Chem.MolFromSmiles(smiles) #TODO small hack only applicable here!!!
                fp_list.append( AllChem.GetMorganFingerprint(mol, self.radius, useChirality=self.useChirality,
                                                             useFeatures=self.useFeatures).GetNonzeroElements() ) #returns a dict
            except:
                fp_list.append({})
        return fp_list

    def fit(self, x_train):
        fp_list = self.compute_fp_list(x_train)
        Xraw = self.v.fit_transform(fp_list)
        idx_col = np.array((Xraw>0).sum(axis=0)>=self.min_fragm_occur).flatten()
        self.idx_col = idx_col
        return Xraw[:,self.idx_col].toarray()

    def transform(self, x_test):
        fp_list = self.compute_fp_list(x_test)
        X_raw = self.v.transform(fp_list)
        return X_raw[:,self.idx_col].toarray()


def ecfp2dict(mol, radius=3):
    #SECFP (SMILES Extended Connectifity Fingerprint)
    # from mhfp.encoder import MHFPEncoder
    from mhfp.encoder import MHFPEncoder
    v = MHFPEncoder.secfp_from_mol(mol, length=4068, radius=radius, rings=True, kekulize=True, min_radius=1)
    return {f'ECFP{radius*2}_'+str(idx):1 for idx in np.nonzero(v)[0]}


def erg2dict(mol):
    v = AllChem.GetErGFingerprint(mol)
    return {'erg'+str(idx):v[idx] for idx in np.nonzero(v)[0]}


def morgan2dict(mol, radius=2, useChirality=True, useBondTypes=True, useFeatures=True, useConts=True):
    mdic = AllChem.GetMorganFingerprint(mol, radius=radius, useChirality=useChirality, useBondTypes=True,
                                    useFeatures=True, useCounts=True).GetNonzeroElements()
    return {f'm{radius}{useChirality}{useBondTypes}{useFeatures}'+str(kk):mdic[kk]for kk in mdic}


def atompair2dict(mol):
    mdic = AllChem.GetAtomPairFingerprint(mol).GetNonzeroElements()
    return {f'ap'+str(kk):mdic[kk]for kk in mdic}


def tt2dict(mol):
    mdic = AllChem.GetTopologicalTorsionFingerprint(mol).GetNonzeroElements()
    return {f'tt'+str(kk):mdic[kk]for kk in mdic}


def rdk2dict(mol):
    mdic = AllChem.UnfoldedRDKFingerprintCountBased(mol).GetNonzeroElements()
    return {f'rdk'+str(kk):mdic[kk]for kk in mdic}


def pattern2dict(mol):
    mdic = AllChem.PatternFingerprint(mol, fpSize=16384).GetOnBits()
    return {'pt'+str(kk):1 for kk in mdic}


fingerprintTypes = {
    'MACCS' : lambda k: {'MCCS'+str(ob):1 for ob in AllChem.GetMACCSKeysFingerprint(k).GetOnBits()},
    'Morgan2CBF' : lambda mol: morgan2dict(mol, 2, True, True, True, True),
    'Morgan4CBF' : lambda mol: morgan2dict(mol, 4, True, True, True, True),
    'Morgan6CBF' : lambda mol: morgan2dict(mol, 6, True, True, True, True),
    'ErG' :  erg2dict,
    'AtomPair' : atompair2dict,
    'TopologicalTorsion' : tt2dict,
    #'RDK' : lambda k: {'MCCS'+str(ob):1 for ob in AllChem.RDKFingerprint(k).GetOnBits()},
    'RDK' : rdk2dict,
    'ECFP6' : lambda mol: ecfp2dict(mol, radius=3),
    'Pattern': pattern2dict,
}


def smarts2appl(product_smarts, template_product_smarts, fpsize=2048, v=False, use_tqdm=False, njobs=1, nsplits=1):
    """This takes in a list of product smiles (misnamed in code) and a list of product sides
    of templates and calculates which templates are applicable to which product.
    This is basically a substructure search. Maybe there are faster versions but I wrote this one.

    Args:
        product_smarts: List of smiles of molecules to check.
        template_product_smarts: List of substructures to check
        fpsize: fingerprint size to use in screening
        v: if v then information will be printed
        use_tdqm: if True then a progressbar will be displayed but slows down the computation.
        njobs: how many parallel jobs to run in parallel.
        nsplits: how many splits should be made along the product_smarts list. Useful to avoid memory
            explosion.
    Returns: list of tuples (i,j) that indicates the product i has substructure j.
    """
    if v: print("Calculating template molecules")
    template_mols = [Chem.MolFromSmarts(s) for s in template_product_smarts]
    if v: print("Calculating template fingerprints")
    template_ebvs = [Chem.PatternFingerprint(m, fpSize=fpsize) for m in template_mols]
    if v: print(f'Building template ints: [{len(template_mols)}, {fpsize}]')
    template_ints = [int(e.ToBitString(), base=2) for e in template_ebvs]
    del template_ebvs

    if njobs == 1 and nsplits == 1:
        return _smarts2appl(product_smarts, template_product_smarts, template_ints, fpsize, v, use_tqdm)
    elif nsplits == 1:
        nsplits = njobs


    # split products into batches
    product_splits = np.array_split(np.array(product_smarts), nsplits)
    ioffsets = [0] + list(np.cumsum([p.shape[0] for p in product_splits[:-1]]))
    inps = [(ps, template_product_smarts, template_ints, fpsize, v, use_tqdm, ioff, 0) for ps, ioff in zip(product_splits, ioffsets)]

    if v: print("Creating workers")
    #results = process_map(__smarts2appl, inps, max_workers=njobs, chunksize=1)
    with Pool(njobs) as pool:
        results = pool.starmap(_smarts2appl, inps)
    imatch = np.concatenate([r[0] for r in results])
    jmatch = np.concatenate([r[1] for r in results])
    return imatch, jmatch


def __smarts2appl(inp):
    return _smarts2appl(*inp)


def _smarts2appl(product_smarts, template_product_smarts, template_ints, fpsize=2048, v=False, use_tqdm=True, ioffset=0, joffset=0):
    """See smarts2appl for a description"""

    if v: print("Calculating product molecules")
    product_mols = [Chem.MolFromSmiles(s) for s in product_smarts]
    if v: print("Calculating product fingerprints")
    product_ebvs = [Chem.PatternFingerprint(m, fpSize=fpsize) for m in product_mols]
    if v: print(f'Building product ints: [{len(product_mols)}, {fpsize}]')
    # This loads each fingerprint into a python integer on which we can use bitwise operations.
    product_ints = [int(e.ToBitString(), base=2) for e in product_ebvs]
    del product_ebvs

    # product_mols = {i: m for i,m in enumerate(product_mols)}


    if v: print('Checking symbolically')
    # buffer for template molecules. This are handed over as smarts as they are slow to pickle
    template_mols = {}

    # create iterator and add progressbar if use_tqdm is True
    iterator = product(enumerate(product_ints), enumerate(template_ints))
    if use_tqdm:
        nelem = len(product_ints) * len(template_ints)
        iterator = tqdm(iterator, total=nelem, miniters=1_000_000)

    imatch = []
    jmatch = []
    for (i, p_int), (j, t_int) in iterator:
        if (p_int & t_int) == t_int:        # fingerprint based screen
            p = product_mols[i]
            t = template_mols.get(j, False)
            if not t:
                t = Chem.MolFromSmarts(template_product_smarts[j])
                template_mols[j] = t
            if p.HasSubstructMatch(t):
                imatch.append(i)
                jmatch.append(j)
    if v: print("Finished loop")
    return np.array(imatch)+ioffset, np.array(jmatch)+joffset


def extract_from_reaction(reaction, radius=1, verbose=False):
    """adapted from rdchiral package"""
    from rdchiral.template_extractor import mols_from_smiles_list, replace_deuterated, get_fragments_for_changed_atoms, expand_changed_atom_tags, canonicalize_transform, get_changed_atoms
    reactants = mols_from_smiles_list(replace_deuterated(reaction['reactants']).split('.'))
    products = mols_from_smiles_list(replace_deuterated(reaction['products']).split('.'))

    # if rdkit cant understand molecule, return
    if None in reactants: return {'reaction_id': reaction['_id']}
    if None in products: return {'reaction_id': reaction['_id']}

    # try to sanitize molecules
    try:
        #for i in range(len(reactants)):
        #    reactants[i] = AllChem.RemoveHs(reactants[i]) # *might* not be safe
        #for i in range(len(products)):
        #    products[i] = AllChem.RemoveHs(products[i]) # *might* not be safe

        #[Chem.SanitizeMol(mol) for mol in reactants + products] # redundant w/ RemoveHs
        for mol in reactants + products:
            Chem.SanitizeMol(mol, catchErrors=True)
            FastFindRings(mol) #Providing ring info
            mol.UpdatePropertyCache(strict=False) #Correcting valence info # important operation

        #changed
        #[Chem.SanitizeMol(mol, catchErrors=True) for mol in reactants + products] # redundant w/ RemoveHs

        #[mol.UpdatePropertyCache() for mol in reactants + products]
    except Exception as e:
        # can't sanitize -> skip
        print(e)
        print('Could not load SMILES or sanitize')
        print('ID: {}'.format(reaction['_id']))
        return {'reaction_id': reaction['_id']}

    are_unmapped_product_atoms = False
    extra_reactant_fragment = ''
    for product in products:
        prod_atoms = product.GetAtoms()
        if sum([a.HasProp('molAtomMapNumber') for a in prod_atoms]) < len(prod_atoms):
            if verbose: print('Not all product atoms have atom mapping')
            if verbose: print('ID: {}'.format(reaction['_id']))
            are_unmapped_product_atoms = True

    if are_unmapped_product_atoms: # add fragment to template
        for product in products:
            prod_atoms = product.GetAtoms()
            # Get unmapped atoms
            unmapped_ids = [
                a.GetIdx() for a in prod_atoms if not a.HasProp('molAtomMapNumber')
            ]
            if len(unmapped_ids) > MAXIMUM_NUMBER_UNMAPPED_PRODUCT_ATOMS:
                # Skip this example - too many unmapped product atoms!
                return
            # Define new atom symbols for fragment with atom maps, generalizing fully
            atom_symbols = ['[{}]'.format(a.GetSymbol()) for a in prod_atoms]
            # And bond symbols...
            bond_symbols = ['~' for b in product.GetBonds()]
            if unmapped_ids:
                extra_reactant_fragment += AllChem.MolFragmentToSmiles(
                    product, unmapped_ids,
                    allHsExplicit = False, isomericSmiles = USE_STEREOCHEMISTRY,
                    atomSymbols = atom_symbols, bondSymbols = bond_symbols
                ) + '.'
        if extra_reactant_fragment:
            extra_reactant_fragment = extra_reactant_fragment[:-1]
            if verbose: print('    extra reactant fragment: {}'.format(extra_reactant_fragment))

        # Consolidate repeated fragments (stoichometry)
        extra_reactant_fragment = '.'.join(sorted(list(set(extra_reactant_fragment.split('.')))))


    if None in reactants + products:
        print('Could not parse all molecules in reaction, skipping')
        print('ID: {}'.format(reaction['_id']))
        return {'reaction_id': reaction['_id']}

    # Calculate changed atoms
    changed_atoms, changed_atom_tags, err = get_changed_atoms(reactants, products)
    if err:
        if verbose:
            print('Could not get changed atoms')
            print('ID: {}'.format(reaction['_id']))
        return
    if not changed_atom_tags:
        if verbose:
            print('No atoms changed?')
            print('ID: {}'.format(reaction['_id']))
        # print('Reaction SMILES: {}'.format(example_doc['RXN_SMILES']))
        return {'reaction_id': reaction['_id']}

    try:
        # Get fragments for reactants
        reactant_fragments, intra_only, dimer_only = get_fragments_for_changed_atoms(reactants, changed_atom_tags,
            radius = radius, expansion = [], category = 'reactants')
        # Get fragments for products
        # (WITHOUT matching groups but WITH the addition of reactant fragments)
        product_fragments, _, _  = get_fragments_for_changed_atoms(products, changed_atom_tags,
            radius = radius-1, expansion = expand_changed_atom_tags(changed_atom_tags, reactant_fragments),
            category = 'products')
    except ValueError as e:
        if verbose:
            print(e)
            print(reaction['_id'])
        return {'reaction_id': reaction['_id']}

    # Put together and canonicalize (as best as possible)
    rxn_string = '{}>>{}'.format(reactant_fragments, product_fragments)
    rxn_canonical = canonicalize_transform(rxn_string)
    # Change from inter-molecular to intra-molecular
    rxn_canonical_split = rxn_canonical.split('>>')
    rxn_canonical = rxn_canonical_split[0][1:-1].replace(').(', '.') + \
        '>>' + rxn_canonical_split[1][1:-1].replace(').(', '.')

    reactants_string = rxn_canonical.split('>>')[0]
    products_string  = rxn_canonical.split('>>')[1]

    retro_canonical = products_string + '>>' + reactants_string

    # Load into RDKit
    rxn = AllChem.ReactionFromSmarts(retro_canonical)
    # edited
    #if rxn.Validate()[1] != 0:
    #    print('Could not validate reaction successfully')
    #    print('ID: {}'.format(reaction['_id']))
    #    print('retro_canonical: {}'.format(retro_canonical))
    #    if VERBOSE: raw_input('Pausing...')
    #    return {'reaction_id': reaction['_id']}
    n_warning, n_errors = rxn.Validate()
    if n_errors:
      # resolves some errors
      rxn = AllChem.ReactionFromSmarts(AllChem.ReactionToSmiles(rxn))
      n_warning, n_errors = rxn.Validate()

    template = {
        'products': products_string,
        'reactants': reactants_string,
        'reaction_smarts': retro_canonical,
        'intra_only': intra_only,
        'dimer_only': dimer_only,
        'reaction_id': reaction['_id'],
        'necessary_reagent': extra_reactant_fragment,
        'num_errors': n_errors,
        'num_warnings': n_warning,
    }

    return template


def extract_template(rxn_smi, radius=1):
    if isinstance(rxn_smi, str):
        reaction = {
            'reactants': rxn_smi.split('>')[0],
            'products': rxn_smi.split('>')[-1],
            'id': rxn_smi,
            '_id': rxn_smi
        }
    else:
        reaction = rxn_smi
    try:
        res = extract_from_reaction(reaction, radius=radius)
        return res['reaction_smarts'] # returns a retro-template
    except:
        msg = f'failed to extract template from "{rxn_smi}"'
        log.warning(msg)
        return None


def getTemplateFingerprint(smarts, fp_size=4096):
    """ CreateStructuralFingerprintForReaction """
    if isinstance(smarts, (list,)):
        return np.vstack([getTemplateFingerprint(sm) for sm in smarts])

    rxn = AllChem.ReactionFromSmarts(str(smarts))
    if rxn is None:
        msg = f"{smarts} couldn't be converted to a fingerprint using 0's instead"
        log.warning(msg)
        #warnings.warn(msg)
        return np.zeros(fp_size).astype(np.bool)

    return np.array(list(AllChem.CreateStructuralFingerprintForReaction(rxn, )), dtype=np.bool)