Spaces:
Running
Running
import os | |
import gradio as gr | |
from huggingface_hub import Repository | |
from text_generation import Client | |
# from dialogues import DialogueTemplate | |
from share_btn import (community_icon_html, loading_icon_html, share_btn_css, | |
share_js) | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
API_TOKEN = os.environ.get("API_TOKEN", None) | |
API_URL = os.environ.get("API_URL", None) | |
API_URL = "https://api-inference.huggingface.co/models/timdettmers/guanaco-33b-merged" | |
client = Client( | |
API_URL, | |
headers={"Authorization": f"Bearer {API_TOKEN}"}, | |
) | |
repo = None | |
def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep): | |
past = [] | |
for data in chatbot: | |
user_data, model_data = data | |
if not user_data.startswith(user_name): | |
user_data = user_name + user_data | |
if not model_data.startswith(sep + assistant_name): | |
model_data = sep + assistant_name + model_data | |
past.append(user_data + model_data.rstrip() + sep) | |
if not inputs.startswith(user_name): | |
inputs = user_name + inputs | |
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip() | |
return total_inputs | |
def has_no_history(chatbot, history): | |
return not chatbot and not history | |
header = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. " | |
prompt_template = "### Human: {query} ### Assistant:{response}" | |
def generate( | |
system_message, | |
user_message, | |
chatbot, | |
history, | |
temperature, | |
top_k, | |
top_p, | |
max_new_tokens, | |
repetition_penalty, | |
do_save=True, | |
): | |
# Don't return meaningless message when the input is empty | |
if not user_message: | |
print("Empty input") | |
history.append(user_message) | |
past_messages = [] | |
for data in chatbot: | |
user_data, model_data = data | |
past_messages.extend( | |
[{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}] | |
) | |
if len(past_messages) < 1: | |
prompt = header + prompt_template.format(query=user_message, response="") | |
else: | |
prompt = header | |
for i in range(0, len(past_messages), 2): | |
intermediate_prompt = prompt_template.format(query=past_messages[i]["content"], response=past_messages[i+1]["content"]) | |
print("intermediate: ", intermediate_prompt) | |
prompt = prompt + intermediate_prompt | |
prompt = prompt + prompt_template.format(query=user_message, response="") | |
generate_kwargs = { | |
"temperature": temperature, | |
"top_k": top_k, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens, | |
} | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
truncate=999, | |
seed=42, | |
) | |
stream = client.generate_stream( | |
prompt, | |
**generate_kwargs, | |
) | |
output = "" | |
for idx, response in enumerate(stream): | |
print(f'step {idx} - {response.token.text}') | |
if response.token.text == '': | |
break | |
if response.token.special: | |
continue | |
output += response.token.text | |
if idx == 0: | |
history.append(" " + output) | |
else: | |
history[-1] = output | |
chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)] | |
yield chat, history, user_message, "" | |
return chat, history, user_message, "" | |
examples = [ | |
"A Llama entered in my garden, what should I do?" | |
] | |
def clear_chat(): | |
return [], [] | |
def process_example(args): | |
for [x, y] in generate(args): | |
pass | |
return [x, y] | |
title = """<h1 align="center">Guanaco Playground π¬</h1>""" | |
custom_css = """ | |
#banner-image { | |
display: block; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
#chat-message { | |
font-size: 14px; | |
min-height: 300px; | |
} | |
""" | |
with gr.Blocks(analytics_enabled=False, css=custom_css) as demo: | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
""" | |
π» This demo showcases the Guanaco 33B model, released together with the paper [QLoRA](https://arxiv.org/abs/2305.14314) | |
""" | |
) | |
with gr.Row(): | |
do_save = gr.Checkbox( | |
value=True, | |
label="Store data", | |
info="You agree to the storage of your prompt and generated text for research and development purposes:", | |
) | |
with gr.Accordion(label="System Prompt", open=False, elem_id="parameters-accordion"): | |
system_message = gr.Textbox( | |
elem_id="system-message", | |
placeholder="Below is a conversation between a human user and a helpful AI coding assistant.", | |
show_label=False, | |
) | |
with gr.Row(): | |
with gr.Box(): | |
output = gr.Markdown() | |
chatbot = gr.Chatbot(elem_id="chat-message", label="Chat") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input") | |
with gr.Row(): | |
send_button = gr.Button("Send", elem_id="send-btn", visible=True) | |
clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True) | |
with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"): | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.2, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
) | |
top_k = gr.Slider( | |
label="Top-k", | |
value=50, | |
minimum=0.0, | |
maximum=100, | |
step=1, | |
interactive=True, | |
info="Sample from a shortlist of top-k tokens", | |
) | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.95, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
) | |
max_new_tokens = gr.Slider( | |
label="Max new tokens", | |
value=512, | |
minimum=0, | |
maximum=1024, | |
step=4, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition Penalty", | |
value=1.2, | |
minimum=0.0, | |
maximum=10, | |
step=0.1, | |
interactive=True, | |
info="The parameter for repetition penalty. 1.0 means no penalty.", | |
) | |
with gr.Row(): | |
gr.Examples( | |
examples=examples, | |
inputs=[user_message], | |
cache_examples=False, | |
fn=process_example, | |
outputs=[output], | |
) | |
history = gr.State([]) | |
# To clear out "message" input textbox and use this to regenerate message | |
last_user_message = gr.State("") | |
user_message.submit( | |
generate, | |
inputs=[ | |
system_message, | |
user_message, | |
chatbot, | |
history, | |
temperature, | |
top_k, | |
top_p, | |
max_new_tokens, | |
repetition_penalty, | |
do_save, | |
], | |
outputs=[chatbot, history, last_user_message, user_message], | |
) | |
send_button.click( | |
generate, | |
inputs=[ | |
system_message, | |
user_message, | |
chatbot, | |
history, | |
temperature, | |
top_k, | |
top_p, | |
max_new_tokens, | |
repetition_penalty, | |
do_save, | |
], | |
outputs=[chatbot, history, last_user_message, user_message], | |
) | |
clear_chat_button.click(clear_chat, outputs=[chatbot, history]) | |
# share_button.click(None, [], [], _js=share_js) | |
demo.queue(concurrency_count=16).launch(debug=True) |