Spaces:
Sleeping
Sleeping
File size: 4,971 Bytes
b24327e 6df9fea b24327e 6df9fea b24327e 6df9fea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import openai
import gradio as gr
import os
from dotenv import load_dotenv
import tiktoken
from typing import Any, Dict, Generator, List
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer
load_dotenv()
OPENAI_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MODEL = os.getenv("HF_MODEL")
if not HF_MODEL:
raise ValueError("HF_MODEL environment variable is not set")
TOKENIZER = AutoTokenizer.from_pretrained(HF_MODEL)
HF_CLIENT = InferenceClient(
os.getenv("HF_MODEL"),
token=HF_TOKEN
)
OAI_CLIENT = openai.Client(api_key=OPENAI_KEY)
HF_GENERATE_KWARGS = {
'temperature': max(float(os.getenv("TEMPERATURE", 0.9)), 1e-2),
'max_new_tokens': int(os.getenv("MAX_NEW_TOKENS", 256)),
'top_p': float(os.getenv("TOP_P", 0.6)),
'repetition_penalty': float(os.getenv("REP_PENALTY", 1.2)),
'do_sample': bool(os.getenv("DO_SAMPLE", True))
}
OAI_GENERATE_KWARGS = {
'temperature': max(float(os.getenv("TEMPERATURE", 0.9)), 1e-2),
'max_tokens': int(os.getenv("MAX_NEW_TOKENS", 256)),
'top_p': float(os.getenv("TOP_P", 0.6)),
'frequency_penalty': max(-2, min(float(os.getenv("FREQ_PENALTY", 0)), 2))
}
def format_prompt(message: str, api_kind: str):
"""
Formats the given message using a chat template.
Args:
message (str): The user message to be formatted.
api_kind (str): LLM API provider.
Returns:
str: Formatted message after applying the chat template.
"""
# Create a list of message dictionaries with role and content
messages: List[Dict[str, str]] = [{'role': 'user', 'content': message}]
if api_kind == "openai":
return messages
elif api_kind == "hf":
return TOKENIZER.apply_chat_template(messages, tokenize=False)
elif api_kind:
raise ValueError("API is not supported")
def generate_hf(prompt: str, history: str) -> Generator[str, None, str]:
"""
Generate a sequence of tokens based on a given prompt and history using Mistral client.
Args:
prompt (str): The prompt for the text generation.
history (str): Context or history for the text generation.
Returns:
Generator[str, None, str]: A generator yielding chunks of generated text.
Returns a final string if an error occurs.
"""
formatted_prompt = format_prompt(prompt, "hf")
formatted_prompt = formatted_prompt.encode("utf-8").decode("utf-8")
# print(f'-------------START Formatted prompt: {formatted_prompt}')
# print('-------------END Formatted prompt')
try:
stream = HF_CLIENT.text_generation(
formatted_prompt,
**HF_GENERATE_KWARGS,
stream=True,
details=True,
return_full_text=False
)
output = ""
for response in stream:
output += response.token.text
yield output
except Exception as e:
if "Too Many Requests" in str(e):
raise gr.Error(f"Too many requests: {str(e)}")
elif "Authorization header is invalid" in str(e):
raise gr.Error("Authentication error: HF token was either not provided or incorrect")
else:
raise gr.Error(f"Unhandled Exception: {str(e)}")
def generate_openai(prompt: str, history: str) -> Generator[str, None, str]:
"""
Generate a sequence of tokens based on a given prompt and history using Mistral client.
Args:
prompt (str): The initial prompt for the text generation.
history (str): Context or history for the text generation.
Returns:
Generator[str, None, str]: A generator yielding chunks of generated text.
Returns a final string if an error occurs.
"""
formatted_prompt = format_prompt(prompt, "openai")
OPENAI_MODEL = os.getenv("OPENAI_MODEL")
if not OPENAI_MODEL:
raise ValueError("OPENAI_MODEL environment variable is not set")
try:
stream = OAI_CLIENT.chat.completions.create(
model=OPENAI_MODEL,
messages=formatted_prompt,
**OAI_GENERATE_KWARGS,
stream=True
)
output = ""
for chunk in stream:
if chunk.choices[0].delta.content:
output += chunk.choices[0].delta.content
yield output
except Exception as e:
if "Too Many Requests" in str(e):
raise gr.Error("ERROR: Too many requests on OpenAI client")
elif "You didn't provide an API key" in str(e):
raise gr.Error("Authentication error: OpenAI key was either not provided or incorrect")
else:
raise gr.Error(f"Unhandled Exception: {str(e)}")
def get_max_length(texts: list[str]) -> int:
encoding = tiktoken.get_encoding("cl100k_base")
max_len = 0
for text in texts:
max_len = max(max_len, len(encoding.encode(text)))
return max_len
|