import torch import transformers import gradio as gr from ragatouille import RAGPretrainedModel from huggingface_hub import InferenceClient import re from datetime import datetime import json import arxiv from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search retrieve_results = 10 show_examples = False llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] generate_kwargs = dict( temperature = None, max_new_tokens = 512, top_p = None, do_sample = False, ) ## RAG Model RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert") try: gr.Info("Setting up retriever, please wait...") rag_initial_output = RAG.search("what is Mistral?", k = 1) gr.Info("Retriever working successfully!") except: gr.Warning("Retriever not working!") ## Header mark_text = '# 🔍 Search Results\n' header_text = "# ArXiv CS RAG \n" try: with open("README.md", "r") as f: mdfile = f.read() date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}' match = re.search(date_pattern, mdfile) date = match.group().split(': ')[1] formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y') header_text += f'Index Last Updated: {formatted_date}\n' index_info = f"Semantic Search - up to {formatted_date}" except: index_info = "Semantic Search" database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)','BeWeb'] ## Arxiv API arx_client = arxiv.Client() is_arxiv_available = True check_arxiv_result = get_arxiv_live_search("What is Mistral?", arx_client, retrieve_results) if len(check_arxiv_result) == 0: is_arxiv_available = False print("Arxiv search not working, switching to default search ...") database_choices = [index_info] ## Show examples (disabled) if show_examples: with open("sample_outputs.json", "r") as f: sample_outputs = json.load(f) output_placeholder = sample_outputs['output_placeholder'] md_text_initial = sample_outputs['search_placeholder'] else: output_placeholder = None md_text_initial = '' def rag_cleaner(inp): rank = inp['rank'] title = inp['document_metadata']['title'] content = inp['content'] date = inp['document_metadata']['_time'] return f"{rank}. {title} \n Date : {date} \n Abstract: {content}" def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'): if formatted: sys_instruction = f"Context:\n {context} \n Avuti i seguenti abstract di studi scientificit, ripondi alla domanda. Cita i titoli degli abstracts quando rispondi,non citare links o date." message = f"Question: {question}" if 'mistralai' in llm_model_picked: return f"" + f"[INST] {sys_instruction}" + f" {message}[/INST]" elif 'gemma' in llm_model_picked: return f"user\n{sys_instruction}" + f" {message}\n" return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n" def get_references(question, retriever, k = retrieve_results): rag_out = retriever.search(query=question, k=k) return rag_out def get_rag(message): return get_references(message, RAG) with gr.Blocks(theme = gr.themes.Soft()) as demo: header = gr.Markdown(header_text) with gr.Group(): msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?') with gr.Accordion("Advanced Settings", open=False): with gr.Row(equal_height = True): llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model') llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context") database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source') stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False) output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder) input = gr.Textbox(show_label = False, visible = False) gr_md = gr.Markdown(mark_text + md_text_initial) def update_with_rag_md(message, llm_results_use = 10, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'): prompt_text_from_data = "" database_to_use = database_choice if database_choice == index_info: rag_out = get_rag(message) elif database_choice == "BeWeb": rag_out = get_rag(message) else: arxiv_search_success = True try: rag_out = get_arxiv_live_search(message, arx_client, retrieve_results) if len(rag_out) == 0: arxiv_search_success = False except: arxiv_search_success = False if not arxiv_search_success: gr.Warning("Arxiv Search not working, switching to semantic search ...") rag_out = get_rag(message) database_to_use = index_info md_text_updated = mark_text for i in range(retrieve_results): rag_answer = rag_out[i] print("#enzodebug") print(rag_answer) print("#enzo") if i < llm_results_use: md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True) prompt_text_from_data += f"{i+1}. {prompt_text}" else: md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use) md_text_updated += md_text_paper prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked) return md_text_updated, prompt def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False): model_disabled_text = "LLM Model is disabled" output = "" if llm_model_picked == 'None': if stream_outputs: for out in model_disabled_text: output += out yield output return output else: return model_disabled_text client = InferenceClient(llm_model_picked) try: stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False) except: gr.Warning("LLM Inference rate limit reached, try again later!") return "" if stream_outputs: for response in stream: output += response yield output return output else: return stream msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text) demo.queue().launch()