Spaces:
Runtime error
Runtime error
import time | |
import sys | |
import streamlit as st | |
import string | |
from io import StringIO | |
import pdb | |
import json | |
from twc_embeddings import HFModel,SimCSEModel,SGPTModel,CausalLMModel,SGPTQnAModel | |
from twc_openai_embeddings import OpenAIModel | |
from twc_clustering import TWCClustering | |
import torch | |
import requests | |
import socket | |
MAX_INPUT = 10000 | |
SEM_SIMILARITY="1" | |
DOC_RETRIEVAL="2" | |
CLUSTERING="3" | |
use_case = {"1":"Finding similar phrases/sentences","2":"Retrieving semantically matching information to a query. It may not be a factual match","3":"Clustering"} | |
use_case_url = {"1":"https://huggingface.co/spaces/taskswithcode/semantic_similarity","2":"https://huggingface.co/spaces/taskswithcode/semantic_search","3":""} | |
from transformers import BertTokenizer, BertForMaskedLM | |
APP_NAME = "hf/semantic_clustering" | |
INFO_URL = "https://www.taskswithcode.com/stats/" | |
def get_views(action): | |
ret_val = 0 | |
hostname = socket.gethostname() | |
ip_address = socket.gethostbyname(hostname) | |
if ("view_count" not in st.session_state): | |
try: | |
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address} | |
#res = requests.post(INFO_URL, json = app_info).json() | |
#print(res) | |
data = res["count"] | |
except: | |
data = 0 | |
ret_val = data | |
st.session_state["view_count"] = data | |
else: | |
ret_val = st.session_state["view_count"] | |
if (action != "init"): | |
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address} | |
#res = requests.post(INFO_URL, json = app_info).json() | |
return "{:,}".format(ret_val) | |
def construct_model_info_for_display(model_names): | |
options_arr = [] | |
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>The selected models satisfy one or more of the following (1) state-of-the-art (2) the most downloaded models on Hugging Face (3) Large Language Models (e.g. GPT-3)</i></div>" | |
markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>" | |
for node in model_names: | |
options_arr .append(node["name"]) | |
if (node["mark"] == "True"): | |
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"> • Model: <a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/> Code released by: <a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/> Model info: <a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>" | |
if ("Note" in node): | |
markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\"> {node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>" | |
markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>" | |
markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>• Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached</div>" | |
limit = "{:,}".format(MAX_INPUT) | |
markdown_str += f"<div style=\"font-size:12px; color: #9f9f9f; text-align: left\">• User uploaded file has a maximum limit of {limit} sentences.</div>" | |
return options_arr,markdown_str | |
st.set_page_config(page_title='TWC - Compare popular/state-of-the-art models for semantic clustering using sentence embeddings', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto', | |
menu_items={ | |
'About': 'This app was created by taskswithcode. http://taskswithcode.com' | |
}) | |
col,pad = st.columns([85,15]) | |
with col: | |
st.image("long_form_logo_with_icon.png") | |
def load_model(model_name,model_class,load_model_name): | |
try: | |
ret_model = None | |
obj_class = globals()[model_class] | |
ret_model = obj_class() | |
ret_model.init_model(load_model_name) | |
assert(ret_model is not None) | |
except Exception as e: | |
st.error(f"Unable to load model class:{model_class} model_name: {model_name} load_model_name: {load_model_name} {str(e)}") | |
pass | |
return ret_model | |
def cached_compute_similarity(input_file_name,sentences,_model,model_name,threshold,_cluster,clustering_type): | |
texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False) | |
results = _cluster.cluster(None,texts,embeddings,threshold,clustering_type) | |
return results | |
def uncached_compute_similarity(input_file_name,sentences,_model,model_name,threshold,cluster,clustering_type): | |
with st.spinner('Computing vectors for sentences'): | |
texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False) | |
results = cluster.cluster(None,texts,embeddings,threshold,clustering_type) | |
#st.success("Similarity computation complete") | |
return results | |
DEFAULT_HF_MODEL = "sentence-transformers/paraphrase-MiniLM-L6-v2" | |
def get_model_info(model_names,model_name): | |
for node in model_names: | |
if (model_name == node["name"]): | |
return node,model_name | |
return get_model_info(model_names,DEFAULT_HF_MODEL) | |
def run_test(model_names,model_name,input_file_name,sentences,display_area,threshold,user_uploaded,custom_model,clustering_type): | |
display_area.text("Loading model:" + model_name) | |
#Note. model_name may get mapped to new name in the call below for custom models | |
orig_model_name = model_name | |
model_info,model_name = get_model_info(model_names,model_name) | |
if (model_name != orig_model_name): | |
load_model_name = orig_model_name | |
else: | |
load_model_name = model_info["model"] | |
if ("Note" in model_info): | |
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})" | |
display_area.write(fail_link) | |
if (user_uploaded and "custom_load" in model_info and model_info["custom_load"] == "False"): | |
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})" | |
display_area.write(fail_link) | |
return {"error":fail_link} | |
model = load_model(model_name,model_info["class"],load_model_name) | |
display_area.text("Model " + model_name + " load complete") | |
try: | |
if (user_uploaded): | |
results = uncached_compute_similarity(input_file_name,sentences,model,model_name,threshold,st.session_state["cluster"],clustering_type) | |
else: | |
display_area.text("Computing vectors for sentences") | |
results = cached_compute_similarity(input_file_name,sentences,model,model_name,threshold,st.session_state["cluster"],clustering_type) | |
display_area.text("Similarity computation complete") | |
return results | |
except Exception as e: | |
st.error("Some error occurred during prediction" + str(e)) | |
st.stop() | |
return {} | |
def display_results(orig_sentences,results,response_info,app_mode,model_name): | |
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>" | |
main_sent += f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">Showing results for model: <b>{model_name}</b></div>" | |
score_text = "cosine distance" | |
main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Clustering by {score_text}. <b>{len(results['clusters'])} clusters</b>. mean:{results['info']['mean']:.2f}; std:{results['info']['std']:.2f}; current threshold:{results['info']['current_threshold']}<br/>Threshold hints:{str(results['info']['zscores'])}<br/>Overlap stats(overlap,freq):{str(results['info']['overlap'])}</div>" | |
body_sent = [] | |
download_data = {} | |
for i in range(len(results["clusters"])): | |
pivot_index = results["clusters"][i]["pivot_index"] | |
pivot_sent = orig_sentences[pivot_index] | |
pivot_index += 1 | |
d_cluster = {} | |
download_data[i + 1] = d_cluster | |
d_cluster["pivot"] = {"pivot_index":pivot_index,"sent":pivot_sent,"children":{}} | |
body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{pivot_index}] {pivot_sent} <b><i>(Cluster {i+1})</i></b> </div>") | |
neighs_dict = results["clusters"][i]["neighs"] | |
for key in neighs_dict: | |
cosine_dist = neighs_dict[key] | |
child_index = key | |
sentence = orig_sentences[child_index] | |
child_index += 1 | |
body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{child_index}] {sentence} <b>{cosine_dist:.2f}</b></div>") | |
d_cluster["pivot"]["children"][sentence] = f"{cosine_dist:.2f}" | |
body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"> </div>") | |
main_sent = main_sent + "\n" + '\n'.join(body_sent) | |
st.markdown(main_sent,unsafe_allow_html=True) | |
st.session_state["download_ready"] = json.dumps(download_data,indent=4) | |
get_views("submit") | |
def init_session(): | |
if ("model_name" not in st.session_state): | |
st.session_state["model_name"] = "ss_test" | |
st.session_state["download_ready"] = None | |
st.session_state["model_name"] = "ss_test" | |
st.session_state["threshold"] = 1.5 | |
st.session_state["file_name"] = "default" | |
st.session_state["overlapped"] = "overlapped" | |
st.session_state["cluster"] = TWCClustering() | |
else: | |
print("Skipping init session") | |
def app_main(app_mode,example_files,model_name_files,clus_types): | |
init_session() | |
with open(example_files) as fp: | |
example_file_names = json.load(fp) | |
with open(model_name_files) as fp: | |
model_names = json.load(fp) | |
with open(clus_types) as fp: | |
cluster_types = json.load(fp) | |
curr_use_case = use_case[app_mode].split(".")[0] | |
st.markdown("<h5 style='text-align: center;'>Compare popular/state-of-the-art models for semantic clustering using sentence embeddings</h5>", unsafe_allow_html=True) | |
st.markdown(f"<p style='font-size:14px; color: #4f4f4f; text-align: center'><i>Or compare your own model with state-of-the-art/popular models</p>", unsafe_allow_html=True) | |
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/> • <a href=\'{use_case_url['1']}\' target='_blank'>{use_case['1']}</a><br/> • <a href=\'{use_case_url['2']}\' target='_blank'>{use_case['2']}</a><br/> • {use_case['3']}<br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True) | |
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views('init')}</div>", unsafe_allow_html=True) | |
try: | |
with st.form('twc_form'): | |
step1_line = "Upload text file(one sentence in a line) or choose an example text file below" | |
if (app_mode == DOC_RETRIEVAL): | |
step1_line += ". The first line is treated as the query" | |
uploaded_file = st.file_uploader(step1_line, type=".txt") | |
selected_file_index = st.selectbox(label=f'Example files ({len(example_file_names)})', | |
options = list(dict.keys(example_file_names)), index=0, key = "twc_file") | |
st.write("") | |
options_arr,markdown_str = construct_model_info_for_display(model_names) | |
selection_label = 'Select Model' | |
selected_model = st.selectbox(label=selection_label, | |
options = options_arr, index=0, key = "twc_model") | |
st.write("") | |
custom_model_selection = st.text_input("Model not listed above? Type any Hugging Face sentence embedding model name ", "",key="custom_model") | |
hf_link_str = "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><a href='https://huggingface.co/models?pipeline_tag=sentence-similarity' target = '_blank'>List of Hugging Face sentence embedding models</a><br/><br/><br/></div>" | |
st.markdown(hf_link_str, unsafe_allow_html=True) | |
threshold = st.number_input('Choose a zscore threshold (number of std devs from mean)',value=st.session_state["threshold"],min_value = 0.0,step=.01) | |
st.write("") | |
clustering_type = st.selectbox(label=f'Select type of clustering', | |
options = list(dict.keys(cluster_types)), index=0, key = "twc_cluster_types") | |
st.write("") | |
submit_button = st.form_submit_button('Run') | |
input_status_area = st.empty() | |
display_area = st.empty() | |
if submit_button: | |
start = time.time() | |
if uploaded_file is not None: | |
st.session_state["file_name"] = uploaded_file.name | |
sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read() | |
else: | |
st.session_state["file_name"] = example_file_names[selected_file_index]["name"] | |
sentences = open(example_file_names[selected_file_index]["name"]).read() | |
sentences = sentences.split("\n")[:-1] | |
if (len(sentences) > MAX_INPUT): | |
st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen") | |
sentences = sentences[:MAX_INPUT] | |
if (len(custom_model_selection) != 0): | |
run_model = custom_model_selection | |
else: | |
run_model = selected_model | |
st.session_state["model_name"] = selected_model | |
st.session_state["threshold"] = threshold | |
st.session_state["overlapped"] = cluster_types[clustering_type]["type"] | |
results = run_test(model_names,run_model,st.session_state["file_name"],sentences,display_area,threshold,(uploaded_file is not None),(len(custom_model_selection) != 0),cluster_types[clustering_type]["type"]) | |
display_area.empty() | |
with display_area.container(): | |
if ("error" in results): | |
st.error(results["error"]) | |
else: | |
device = 'GPU' if torch.cuda.is_available() else 'CPU' | |
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences" | |
if (len(custom_model_selection) != 0): | |
st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2") | |
display_results(sentences,results,response_info,app_mode,run_model) | |
#st.json(results) | |
if submit_button: | |
st.download_button( | |
label="Download results as JSON", | |
data=st.session_state["download_ready"] if st.session_state["download_ready"] is not None else "", | |
disabled=not st.session_state["download_ready"], | |
file_name=(st.session_state["model_name"] + "_" + str(st.session_state["threshold"]) + "_" + | |
st.session_state["overlapped"] + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + | |
".json").replace("/", "_"), | |
mime='text/json', | |
key="download" | |
) | |
except Exception as e: | |
st.error("Some error occurred during loading" + str(e)) | |
if submit_button: | |
st.download_button( | |
label="Download results as JSON", | |
data=st.session_state["download_ready"] if st.session_state["download_ready"] is not None else "", | |
disabled=not st.session_state["download_ready"], | |
file_name=(st.session_state["model_name"] + "_" + str(st.session_state["threshold"]) + "_" + | |
st.session_state["overlapped"] + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + | |
".json").replace("/", "_"), | |
mime='text/json', | |
key="download" | |
) | |
#st.stop() | |
st.markdown(markdown_str, unsafe_allow_html=True) | |
if __name__ == "__main__": | |
#print("comand line input:",len(sys.argv),str(sys.argv)) | |
#app_main(sys.argv[1],sys.argv[2],sys.argv[3]) | |
#app_main("1","sim_app_examples.json","sim_app_models.json") | |
app_main("3","clus_app_examples.json","clus_app_models.json","clus_app_clustypes.json") | |