Spaces:
Sleeping
Sleeping
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import GPT2Tokenizer, GPT2Model
|
4 |
+
from langchain.prompts import PromptTemplate
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
9 |
+
model = GPT2Model.from_pretrained('gpt2')
|
10 |
+
|
11 |
+
|
12 |
+
class TextRequest(BaseModel):
|
13 |
+
text: str
|
14 |
+
|
15 |
+
|
16 |
+
def preprocess_text(text: str):
|
17 |
+
return text.lower()
|
18 |
+
|
19 |
+
|
20 |
+
def classify_text(question: str):
|
21 |
+
prompt_template = PromptTemplate(template="Answer the following question and classify it: {question}", input_variables = ["question"], output_variables=["answer", "classification"])
|
22 |
+
# Model loading
|
23 |
+
format_prompt = prompt_template.format(question=question)
|
24 |
+
encoded_input = tokenizer(format_prompt, return_tensors='pt')
|
25 |
+
output = model(encoded_input)
|
26 |
+
# chain = LLMChain(llm=llm, prompt=prompt_template, verbose=True)
|
27 |
+
# response = chain({"question": question})
|
28 |
+
return output
|
29 |
+
|
30 |
+
|
31 |
+
@app.post("/classify")
|
32 |
+
async def classify_text_endpoint(request: TextRequest):
|
33 |
+
preprocessed_text = preprocess_text(request.text)
|
34 |
+
response = classify_text(preprocessed_text)
|
35 |
+
answer = response['text']
|
36 |
+
return {"answer": answer}
|