Spaces:
Running
Running
Create audio_to_text.py
Browse files- audio_to_text.py +23 -0
audio_to_text.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
2 |
+
import torchaudio
|
3 |
+
|
4 |
+
|
5 |
+
# load model and processor
|
6 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
7 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
8 |
+
model.config.forced_decoder_ids = None
|
9 |
+
|
10 |
+
|
11 |
+
def audio_to_text(file_path_abs):
|
12 |
+
# Load the audio and resample it
|
13 |
+
waveform, sample_rate = torchaudio.load(file_path_abs)
|
14 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
15 |
+
waveform = resampler(waveform)
|
16 |
+
waveform = waveform.squeeze().numpy()
|
17 |
+
input_features = processor(waveform, sampling_rate=16000, return_tensors="pt").input_features
|
18 |
+
|
19 |
+
# generate token ids
|
20 |
+
predicted_ids = model.generate(input_features)
|
21 |
+
# decode token ids to text
|
22 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
23 |
+
return transcription
|