from transformers import WhisperProcessor, WhisperForConditionalGeneration import torchaudio import torch # load model and processor processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") model.config.forced_decoder_ids = None def audio_to_text(audio_data,sample_rate): # Convert raw audio frame (numpy array) to tensor and resample it to 16 kHz waveform = torch.tensor(audio_data, dtype=torch.float32).unsqueeze(0) # Check if the sample rate is 16 kHz; if not, resample it if sample_rate != 16000: resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) waveform = resampler(waveform) waveform = waveform.squeeze().numpy() input_features = processor(waveform, sampling_rate=16000, return_tensors="pt").input_features # generate token ids predicted_ids = model.generate(input_features) # decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription